Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antara R. Basu-Zych is active.

Publication


Featured researches published by Antara R. Basu-Zych.


Monthly Notices of the Royal Astronomical Society | 2010

The GALEX Arecibo SDSS Survey - I. Gas fraction scaling relations of massive galaxies and first data release

Barbara Catinella; David Schiminovich; Guinevere Kauffmann; Silvia Fabello; Jing Wang; Cameron B. Hummels; Jenna Lemonias; Sean M. Moran; Ronin Wu; Riccardo Giovanelli; Martha P. Haynes; Timothy M. Heckman; Antara R. Basu-Zych; Michael R. Blanton; Jarle Brinchmann; Tamas Budavari; Thiago S. Goncalves; Benjamin D. Johnson; Robert C. Kennicutt; Barry F. Madore; Christopher D. Martin; Michael R. Rich; L. J. Tacconi; David Allan Thilker; Vivienne Wild; Ted K. Wyder

We introduce the GALEX Arecibo SDSS Survey (GASS), an on-going large programme that is gathering high quality H i-line spectra using the Arecibo radio telescope for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^(10) M_⊙ and redshifts 0.025 < z < 0.05 , selected from the Sloan Digital Sky Survey (SDSS) spectroscopic and Galaxy Evolution Explorer (GALEX) imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5–5 per cent) is reached. This paper presents the first Data Release, consisting of ~20 per cent of the final GASS sample. We use this data set to explore the main scaling relations of the H i gas fraction with galaxy structure and NUV−r colour. A large fraction (~60 per cent) of the galaxies in our sample are detected in H i. Even at stellar masses above 10^(11) M_⊙, the detected fraction does not fall below ~40 per cent. We find that the atomic gas fraction M_(HI)/M★ decreases strongly with stellar mass, stellar surface mass density and NUV−r colour, but is only weakly correlated with the galaxy bulge-to-disc ratio (as measured by the concentration index of the r-band light). We also find that the fraction of galaxies with significant (more than a few per cent) H I decreases sharply above a characteristic stellar surface mass density of 10^(8.5) M_⊙ kpc^(−2). The fraction of gas-rich galaxies decreases much more smoothly with stellar mass. One of the key goals of GASS is to identify and quantify the incidence of galaxies that are transitioning between the blue, star-forming cloud and the red sequence of passively evolving galaxies. Likely transition candidates can be identified as outliers from the mean scaling relations between M_(HI)/M★ and other galaxy properties. We have fitted a plane to the two-dimensional relation between the H I mass fraction, stellar surface mass density and NUV−r colour. Interesting outliers from this plane include gas-rich red sequence galaxies that may be in the process of regrowing their discs, as well as blue, but gas-poor spirals.


The Astrophysical Journal | 2008

The Coincidence of Nuclear Star Clusters and Active Galactic Nuclei

Anil C. Seth; Marcel A. Agüeros; Duane M. Lee; Antara R. Basu-Zych

We study galaxies that host both nuclear star clusters and AGNs, implying the presence of a massive black hole. We select a sample of 176 galaxies with previously detected nuclear star clusters that range from ellipticals to late-type spirals. We search for AGNs in this sample using optical spectroscopy and archival radio and X-ray data. We find galaxies of all Hubble types and with a wide range of masses (109-1011 M☉) hosting both AGNs and nuclear star clusters. From the optical spectra, we classify 10% of the galaxies as AGN and an additional 15% as composite, indicating a mix of AGN and star formation spectra. The fraction of nucleated galaxies with AGNs increases strongly as a function of galaxy and nuclear star cluster mass. For galaxies with both a nuclear star cluster and a black hole, we find that the masses of these two objects are quite similar. However, nondetections of black holes in Local Group nuclear star clusters show that not all clusters host black holes of similar masses. We discuss the implications of our results for the formation of nuclear star clusters and massive black holes.


The Astrophysical Journal | 2011

Extreme Feedback and the Epoch of Reionization: Clues in the Local Universe

Timothy M. Heckman; Sanchayeeta Borthakur; Roderik Overzier; Guinevere Kauffmann; Antara R. Basu-Zych; Claus Leitherer; K. R. Sembach; D. Chris Martin; R. Michael Rich; David Schiminovich; Mark Seibert

The source responsible for reionizing the universe at z > 6 remains uncertain. While an energetically adequate population of star-forming galaxies may be in place, it is unknown whether a large enough fraction of their ionizing radiation can escape into the intergalactic medium. Attempts to measure this escape fraction in intensely star-forming galaxies at lower redshifts have largely yielded upper limits. In this paper, we present new Hubble Space Telescope Cosmic Origins Spectrograph and archival Far-Ultraviolet Spectroscopic Explorer (FUSE) far-UV spectroscopy of a sample of 11 Lyman Break Analogs (LBAs), a rare population of local galaxies that strongly resemble the high-z Lyman Break galaxies. We combine these data with Sloan Digital Sky Survey optical spectra and Spitzer photometry. We also analyze archival FUSE observations of 15 typical UV-bright local starbursts. We find evidence of small covering factors for optically thick neutral gas in three cases. This is based on two independent pieces of evidence: a significant residual intensity in the cores of the strongest interstellar absorption-lines tracing neutral gas and a small ratio of extinction-corrected Hα to UV plus far-IR luminosities. These objects represent three of the four LBAs that contain a young, very compact (~10^2 pc), and highly massive (~10^9 M_⊙) dominant central object (DCO). These three objects also differ from the other galaxies in showing a significant amount of blueshifted Lyα emission, which may be related to the low covering factor of neutral gas. All four LBAs with DCOs in our sample show extremely high velocity outflows of interstellar gas, with line centroids blueshifted by about 700 km s^(–1) and maximum outflow velocities reaching at least 1500 km s^(–1). We show that these properties are consistent with an outflow driven by a powerful starburst that is exceptionally compact. We speculate that such extreme feedback may be required to enable the escape of ionizing radiation from star-forming galaxies.


The Astrophysical Journal | 2008

Hubble space telescope morphologies of local Lyman break galaxy analogs - I. Evidence for starbursts triggered by merging

Roderik Overzier; Timothy M. Heckman; Guinevere Kauffmann; Mark Seibert; R. Michael Rich; Antara R. Basu-Zych; Jennifer M. Lotz; Alessandra Aloisi; S. Charlot; Charles G. Hoopes; D. Christopher Martin; David Schiminovich; Barry F. Madore

Heckman and coworkers used the GALEX UV imaging survey to show that there exists a rare population of nearby compact UV-luminous galaxies (UVLGs) that closely resemble high-redshift Lyman break galaxies (LBGs). We present HST images in the UV, optical, and Hα and resimulate them at the depth and resolution of the GOODS/UDF fields to show that the morphologies of UVLGs are also similar to those of LBGs. Our sample of eight LBG analogs thus provides detailed insight into the connection between star formation and LBG morphology. Faint tidal features or companions can be seen in all of the rest-frame optical images, suggesting that the starbursts are the result of a merger or interaction. The UV/optical light is dominated by unresolved (~100-300 pc) super starburst regions (SSBs). A detailed comparison with the galaxies Haro 11 and VV 114 at z = 0.02 indicates that the SSBs themselves consist of diffuse stars and (super) star clusters. The structural features revealed by the new HST images occur on very small physical scales and are thus not detectable in images of high-redshift LBGs, except in a few cases where they are magnified by gravitational lensing. We propose, therefore, that LBGs are mergers of gas-rich, relatively low-mass (M_* ~ 10^(10) M☉) systems, and that the mergers trigger the formation of SSBs. If galaxies at high redshifts are dominated by SSBs, then the faint-end slope of the luminosity function is predicted to have slope α ~ 2. Our results are the most direct confirmation to date of models that predict that the main mode of star formation in the early universe was highly collisional.


The Astrophysical Journal | 2013

X-ray Binary Evolution Across Cosmic Time

Tassos Fragos; B. D. Lehmer; Michael Tremmel; Panayiotis Tzanavaris; Antara R. Basu-Zych; Krzysztof Belczynski; Ann Hornschemeier; Leigh Jenkins; V. Kalogera; Andrew F. Ptak; A. Zezas

High redshift galaxies permit the study of the formation and evolution of X-ray binary populations on cosmological timescales, probing a wide range of metallicitie s and star-formation rates. In this paper, we present results from a large scale population synthesis study that m odels the X-ray binary populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history and metallicity evolution of the uni verse. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predict ions about the global scaling of emission from X-ray binary populations with properties such as star-formation rate and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from X-ray binaries in our Universe today is dominated by low-mass X-ray binaries, and it is only at z & 2.5 that high-mass X-ray binaries become dominant. We also find t hat there is a delay of � 1.1 Gyr between the peak of X-ray emissivity from low-mass Xray binaries (at z � 2.1) and the peak of star-formation rate density (at z � 3.1). The peak of the X-ray luminosity from high-mass X-ray binaries (at z � 3.9), happens � 0.8 Gyr before the peak of the star-formation rate density, which is due to the metallicity evolution of the Universe. Subject headings:stars: binaries: close, stars: evolution, X-rays: binarie s, galaxies, diffuse background, galaxies: stellar content


The Astrophysical Journal | 2009

LOCAL LYMAN BREAK GALAXY ANALOGS: THE IMPACT OF MASSIVE STAR-FORMING CLUMPS ON THE INTERSTELLAR MEDIUM AND THE GLOBAL STRUCTURE OF YOUNG, FORMING GALAXIES

Roderik Overzier; Timothy M. Heckman; Christy A. Tremonti; Lee Armus; Antara R. Basu-Zych; Thiago S. Goncalves; R. Michael Rich; D. Christopher Martin; A. Ptak; David Schiminovich; Holland C. Ford; Barry F. Madore; Mark Seibert

We report on the results of Hubble Space Telescope optical and UV imaging, Spitzer mid-IR photometry, and optical spectroscopy of a sample of 30 low-redshift (z ~ 0.1 to 0.3) galaxies chosen from the Sloan Digital Sky Survey and Galaxy Evolution Explorer surveys to be accurate local analogs of the high-redshift Lyman break galaxies. The Lyman break analogs (LBAs) are similar in stellar mass, metallicity, dust extinction, star formation rate (SFR), physical size, and gas velocity dispersion, thus enabling a detailed investigation of many processes that are important in star-forming galaxies at high redshift. The main optical emission-line properties of LBAs, including evidence for outflows, are also similar to those typically found at high redshift. This indicates that the conditions in their interstellar medium are comparable. In the UV, LBAs are characterized by complexes of massive clumps of star formation, while in the optical they most often show evidence for (post-)mergers and interactions. In six cases, we find a single extremely massive (up to several ×10^9 M_☉) compact (radius ~10^2 pc) dominant central object (DCO). The DCOs are preferentially found in LBAs with the highest mid-IR luminosities (L_(24 μm) = 10^(10.3)-10^(11.2) L_☉) and correspondingly high SFRs (15-100 M_☉ yr^(–1)). We show that the massive star-forming clumps (including the DCOs) have masses much larger than the nuclear super star clusters seen in normal late-type galaxies. However, the DCOs do have masses, sizes, and densities similar to the excess light/central cusps seen in typical elliptical galaxies with masses similar to the LBA galaxies. We suggest that the DCOs form in the present-day examples of the dissipative mergers at high redshift that are believed to have produced the central cusps in local ellipticals (consistent with the disturbed optical morphologies of the LBAs). More generally, the properties of the LBAs are consistent with the idea that instabilities in a gas-rich disk lead to very massive star-forming clumps that eventually coalesce to form a spheroid. Finally, we comment on the apparent lack of energetically significant active galactic nuclei in the DCOs. We speculate that the DCOs are too young at present to grow a supermassive black hole because they are still in a supernova-dominated outflow phase (age less than 50 Myr).


Monthly Notices of the Royal Astronomical Society | 2010

The GALEX Arecibo SDSS Survey II: The Star Formation Efficiency of Massive Galaxies

David Schiminovich; Barbara Catinella; Guinevere Kauffmann; Silvia Fabello; Jing Wang; Cameron B. Hummels; Jenna Lemonias; Sean M. Moran; Ronin Wu; Riccardo Giovanelli; Martha P. Haynes; Timothy M. Heckman; Antara R. Basu-Zych; Michael R. Blanton; Jarle Brinchmann; Tamas Budavari; Thiago S. Goncalves; Benjamin D. Johnson; Robert C. Kennicutt; Barry F. Madore; Christopher D. Martin; Michael R. Rich; L. J. Tacconi; David Allan Thilker; Vivienne Wild; Ted K. Wyder

We use measurements of the H I content, stellar mass and star formation rates (SFRs) in ~190 massive galaxies with M_★ > 10^(10) M_⊙, obtained from the GALEX (Galaxy Evolution Explorer) Arecibo SDSS (Sloan Digital Sky Survey) survey described in Paper I to explore the global scaling relations associated with the bin-averaged ratio of the SFR over the H I mass (i.e. ΣSFR/ΣM_(HI)), which we call the H I-based star formation efficiency (SFE). Unlike the mean specific star formation rate (sSFR), which decreases with stellar mass and stellar mass surface density, the SFE remains relatively constant across the sample with a value close to SFE = 10^(−9.5) yr^(−1) (or an equivalent gas consumption time-scale of ~3 × 10^9 yr). Specifically, we find little variation in SFE with stellar mass, stellar mass surface density, NUV −r colour and concentration (R_(90)/R_(50)). We interpret these results as an indication that external processes or feedback mechanisms that control the gas supply are important for regulating star formation in massive galaxies. An investigation into the detailed distribution of SFEs reveals that approximately 5 per cent of the sample shows high efficiencies with SFE > 10^(−9) yr^(−1), and we suggest that this is very likely due to a deficiency of cold gas rather than an excess SFR. Conversely, we also find a similar fraction of galaxies that appear to be gas-rich for their given sSFR, although these galaxies show both a higher than average gas fraction and lower than average sSFR. Both of these populations are plausible candidates for ‘transition’ galaxies, showing potential for a change (either decrease or increase) in their sSFR in the near future. We also find that 36 ± 5 per cent of the total H I mass density and 47 ± 5 per cent of the total SFR density are found in galaxies with M_★ > 10^(10) M_⊙.


The Astrophysical Journal | 2013

THE X-RAY STAR FORMATION STORY AS TOLD BY LYMAN BREAK GALAXIES IN THE 4 Ms CDF-S

Antara R. Basu-Zych; B. D. Lehmer; Ann Hornschemeier; R. J. Bouwens; Tassos Fragos; P. A. Oesch; Krzysztof Belczynski; W. N. Brandt; V. Kalogera; B. Luo; Neal A. Miller; J. R. Mullaney; Panayiotis Tzanavaris; Y. Q. Xue; A. Zezas

We present results from deep X-ray stacking of >4000 high redshift galaxies from z ≈1 to 8 using the 4 Ms Chandra Deep Field South (CDF-S) data, the deepest X-ray survey of the extragalactic sky to date. The galaxy samples were selected using the Lyman break technique based primarily on recent HST ACS and WFC3 observations. Based on such high specific star formation rates (sSFRs): log SFR/M∗ > −8.7, we expect that the observed properties of these LBGs are dominated by young stellar populations. The X-ray emission in LBGs, eliminating individually detected X-ray sources (potential AGN), is expected to be powered by X-ray binaries and hot gas. We find, for the first time, evidence of evolution in the X-ray/SFR relation. Based on X-ray stacking analyses for z < 4 LBGs (covering ∼ 90% of the Universe’s history), we find that the 2–10 keV X-ray luminosity evolves weakly with redshift (z) and SFR as: log LX = 0.93log(1+z)+0.65logSFR+39.80. By comparing our observations with sophisticated X-ray binary population synthesis models, we interpret that the redshift evolution of LX/SFR is driven by metallicity evolution in HMXBs, likely the dominant population in these high sSFR galaxies. We also compare these models with our observations of X-ray luminosity density (total 2–10 keV luminosity per Mpc 3 ) and find excellent agreement. While there are no significant stacked detections at z & 5, we use our upper limits from 5 . z . 8 LBGs to constrain the SMBH accretion history of the Universe around the epoch of reionization.


The Astrophysical Journal | 2013

ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE

Tassos Fragos; B. D. Lehmer; Smadar Naoz; A. Zezas; Antara R. Basu-Zych

X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z ∼ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z ≳ 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ∼4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ∼300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages ≳ 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.


The Astrophysical Journal | 2010

THE KINEMATICS OF IONIZED GAS IN LYMAN-BREAK ANALOGS AT z ∼ 0.2

Thiago S. Goncalves; Antara R. Basu-Zych; Roderik Overzier; D. Christopher Martin; David R. Law; David Schiminovich; Ted K. Wyder; Ryan P. Mallery; R. Michael Rich; Timothy H. Heckman

We present results for 19 “Lyman-break analogs” observed with Keck/OSIRIS with an adaptive-optics-assisted spatial resolution of less than 200 pc. We detect satellites/companions, diffuse emission, and velocity shear, all with high signal-to-noise ratios. These galaxies present remarkably high velocity dispersion along the line of sight (~70 km s^(−1)), much higher than standard star-forming spirals in the low-redshift universe. We artificially redshift our data to z ~ 2.2 to allow for a direct comparison with observations of high-z Lyman-break galaxies and find striking similarities between both samples. This suggests that either similar physical processes are responsible for their observed properties, or, alternatively, that it is very difficult to distinguish between different mechanisms operating in the low- versus high-redshift starburst galaxies based on the available data. The comparison between morphologies in the UV/optical continuum and our kinemetry analysis often shows that neither is by itself sufficient to confirm or completely rule out the contribution from recent merger events. We find a correlation between the kinematic properties and stellar mass, in that more massive galaxies show stronger evidence for a disk-like structure. This suggests a co-evolutionary process between the stellar mass buildup and the formation of morphological and dynamical substructure within the galaxy.

Collaboration


Dive into the Antara R. Basu-Zych's collaboration.

Top Co-Authors

Avatar

B. D. Lehmer

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Roderik Overzier

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Hornschemeier

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Ptak

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Thiago S. Goncalves

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. Christopher Martin

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge