Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony C. Faber is active.

Publication


Featured researches published by Anthony C. Faber.


Journal of Clinical Investigation | 2008

Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins

Marta Guix; Anthony C. Faber; Shizhen Emily Wang; Maria Graciela Olivares; Youngchul Song; Sherman Qu; Cammie Rinehart; Brenda Seidel; Douglas Yee; Carlos L. Arteaga; Jeffrey A. Engelman

Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation.


Science | 2014

Patient-derived models of acquired resistance can identify effective drug combinations for cancer

Adam S. Crystal; Alice T. Shaw; Lecia V. Sequist; Luc Friboulet; Matthew J. Niederst; Elizabeth L. Lockerman; Rosa L. Frias; Justin F. Gainor; Arnaud Amzallag; Patricia Greninger; Dana Lee; Anuj Kalsy; Maria Gomez-Caraballo; Leila Elamine; Emily Howe; Wooyoung Hur; Eugene Lifshits; Hayley Robinson; Ryohei Katayama; Anthony C. Faber; Mark M. Awad; Sridhar Ramaswamy; Mari Mino-Kenudson; A. John Iafrate; Cyril H. Benes; Jeffrey A. Engelman

Targeted cancer therapies have produced substantial clinical responses, but most tumors develop resistance to these drugs. Here, we describe a pharmacogenomic platform that facilitates rapid discovery of drug combinations that can overcome resistance. We established cell culture models derived from biopsy samples of lung cancer patients whose disease had progressed while on treatment with epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors and then subjected these cells to genetic analyses and a pharmacological screen. Multiple effective drug combinations were identified. For example, the combination of ALK and MAPK kinase (MEK) inhibitors was active in an ALK-positive resistant tumor that had developed a MAP2K1 activating mutation, and the combination of EGFR and fibroblast growth factor receptor (FGFR) inhibitors was active in an EGFR mutant resistant cancer with a mutation in FGFR3. Combined ALK and SRC (pp60c-src) inhibition was effective in several ALK-driven patient-derived models, a result not predicted by genetic analysis alone. With further refinements, this strategy could help direct therapeutic choices for individual patients. Secondary chemotherapies can be developed by screening drug-resistant cells from individual cancer patients. Drug resistance, up close and personal Cancer therapies that target specific genetic mutations driving tumor growth have shown promising results in patients; however, the response is often short-lived because the tumors acquire new mutations that render them resistant to these therapies. Complicating matters, the mechanism of resistance can vary from patient to patient. To identify drugs most likely to be effective against resistant tumors, Crystal et al. established cell lines from the tumors of individual patients after resistance occurred and performed a drug screen and genetic analysis on the cultured cells. This strategy successfully identified drug combinations that halted the growth of resistant tumor cells both in culture and in mice. In the future, pharmacological profiling of patient-derived cells could be an efficient way to direct therapeutic choices for individual cancer patients. Science, this issue p. 1480


Proceedings of the National Academy of Sciences of the United States of America | 2009

Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition

Anthony C. Faber; Danan Li; Youngchul Song; Mei-Chih Liang; Beow Y. Yeap; Roderick T. Bronson; Eugene Lifshits; Zhao Chen; Sauveur-Michel Maira; Carlos Garcia-Echeverria; Kwok-Kin Wong; Jeffrey A. Engelman

Non-small cell lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib. Such cancers are “addicted” to EGFR, and treatment with a TKI invariably leads to down-regulation of the PI3K-AKT-mTOR and MEK-ERK signaling pathways, resulting in apoptosis. Using a dual PI3K-mTOR inhibitor, NVP-BEZ235, we evaluated whether PI3K-mTOR inhibition alone induced apoptosis in these cancers. In contrast to HER2-amplified breast cancers, we found that PI3K-mTOR inhibition did not promote substantial apoptosis in the EGFR mutant lung cancers. However, blocking both PI3K-mTOR and MEK simultaneously led to apoptosis to similar levels as the EGFR TKIs, suggesting that down-regulation of these pathways may account for much of the apoptosis promoted by EGFR inhibition. In EGFR mutant lung cancers, down-regulation of both intracellular pathways converged on the BH3 family of proteins regulating apoptosis. PI3K inhibition led to down-regulation of Mcl-1, and MEK inhibition led to up-regulation of BIM. In fact, down-regulation of Mcl-1 by siRNA was sufficient to sensitize these cancers to single-agent MEK inhibitors. Surprisingly, an AKT inhibitor did not decrease Mcl-1 levels, and when combined with MEK inhibitors, failed to induce apoptosis. Importantly, we observed that the combination of PI3K-mTOR and MEK inhibitors effectively shrunk tumors in a transgenic and xenograft model of EGFR T790M-L858R cancers. These data indicate simultaneous inhibition of PI3K-mTOR and MEK signaling is an effective strategy for treating EGFR mutant lung cancers, including those with acquired resistance to EGFR TKIs.


Cancer Research | 2010

An ErbB3 Antibody, MM-121, Is Active in Cancers with Ligand-Dependent Activation

Birgit Schoeberl; Anthony C. Faber; Danan Li; Mei-Chih Liang; Katherine Crosby; Matthew Onsum; Olga Burenkova; Emily Pace; Zandra E. Walton; Lin Nie; Aaron Fulgham; Youngchul Song; Ulrik Nielsen; Jeffrey A. Engelman; Kwok-Kin Wong

ErbB3 is a critical activator of phosphoinositide 3-kinase (PI3K) signaling in epidermal growth factor receptor (EGFR; ErbB1), ErbB2 [human epidermal growth factor receptor 2 (HER2)], and [hepatocyte growth factor receptor (MET)] addicted cancers, and reactivation of ErbB3 is a prominent method for cancers to become resistant to ErbB inhibitors. In this study, we evaluated the in vivo efficacy of a therapeutic anti-ErbB3 antibody, MM-121. We found that MM-121 effectively blocked ligand-dependent activation of ErbB3 induced by either EGFR, HER2, or MET. Assessment of several cancer cell lines revealed that MM-121 reduced basal ErbB3 phosphorylation most effectively in cancers possessing ligand-dependent activation of ErbB3. In those cancers, MM-121 treatment led to decreased ErbB3 phosphorylation and, in some instances, decreased ErbB3 expression. The efficacy of single-agent MM-121 was also examined in xenograft models. A machine learning algorithm found that MM-121 was most effective against xenografts with evidence of ligand-dependent activation of ErbB3. We subsequently investigated whether MM-121 treatment could abrogate resistance to anti-EGFR therapies by preventing reactivation of ErbB3. We observed that an EGFR mutant lung cancer cell line (HCC827), made resistant to gefitinib by exogenous heregulin, was resensitized by MM-121. In addition, we found that a de novo lung cancer mouse model induced by EGFR T790M-L858R rapidly became resistant to cetuximab. Resistance was associated with an increase in heregulin expression and ErbB3 activation. However, concomitant cetuximab treatment with MM-121 blocked reactivation of ErbB3 and resulted in a sustained and durable response. Thus, these results suggest that targeting ErbB3 with MM-121 can be an effective therapeutic strategy for cancers with ligand-dependent activation of ErbB3.


Cancer Cell | 2013

Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS Mutant Cancer Models

Ryan B. Corcoran; Katherine A. Cheng; Aaron N. Hata; Anthony C. Faber; Hiromichi Ebi; Erin M. Coffee; Patricia Greninger; Ronald D. Brown; Jason T. Godfrey; Travis J. Cohoon; Youngchul Song; Eugene Lifshits; Kenneth E. Hung; Toshi Shioda; Dora Dias-Santagata; Anurag Singh; Jeffrey Settleman; Cyril H. Benes; Mari Mino-Kenudson; Kwok-Kin Wong; Jeffrey A. Engelman

KRAS is the most commonly mutated oncogene, yet no effective targeted therapies exist for KRAS mutant cancers. We developed a pooled shRNA-drug screen strategy to identify genes that, when inhibited, cooperate with MEK inhibitors to effectively treat KRAS mutant cancer cells. The anti-apoptotic BH3 family gene BCL-XL emerged as a top hit through this approach. ABT-263 (navitoclax), a chemical inhibitor that blocks the ability of BCL-XL to bind and inhibit pro-apoptotic proteins, in combination with a MEK inhibitor led to dramatic apoptosis in many KRAS mutant cell lines from different tissue types. This combination caused marked in vivo tumor regressions in KRAS mutant xenografts and in a genetically engineered KRAS-driven lung cancer mouse model, supporting combined BCL-XL/MEK inhibition as a potential therapeutic approach for KRAS mutant cancers.


Nature Medicine | 2016

Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition

Aaron N. Hata; Matthew J. Niederst; Hannah L. Archibald; Maria Gomez-Caraballo; Faria Siddiqui; Hillary Mulvey; Yosef E. Maruvka; Fei Ji; Hyo Eun C Bhang; Viveksagar Krishnamurthy Radhakrishna; Giulia Siravegna; Haichuan Hu; Sana Raoof; Elizabeth L. Lockerman; Anuj Kalsy; Dana Lee; Celina L. Keating; David A. Ruddy; Leah Damon; Adam S. Crystal; Carlotta Costa; Zofia Piotrowska; Alberto Bardelli; Anthony John Iafrate; Ruslan I. Sadreyev; Frank Stegmeier; Gad Getz; Lecia V. Sequist; Anthony C. Faber; Jeffrey A. Engelman

Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFRT790M gatekeeper mutation can occur either by selection of pre-existing EGFRT790M-positive clones or via genetic evolution of initially EGFRT790M-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFRT790M; treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor–resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic.


Cancer Discovery | 2011

BIM expression in treatment-naïve cancers predicts responsiveness to kinase inhibitors

Anthony C. Faber; Ryan B. Corcoran; Hiromichi Ebi; Lecia V. Sequist; Belinda A. Waltman; Euiheon Chung; Joao Incio; Subba R. Digumarthy; Sarah F. Pollack; Youngchul Song; Alona Muzikansky; Eugene Lifshits; Sylvie Roberge; Erik J. Coffman; Cyril H. Benes; Henry Gomez; José Baselga; Carlos L. Arteaga; Miguel Rivera; Dora Dias-Santagata; Rakesh K. Jain; Jeffrey A. Engelman

Cancers with specific genetic mutations are susceptible to selective kinase inhibitors. However, there is a wide spectrum of benefit among cancers harboring the same sensitizing genetic mutations. Herein, we measured apoptotic rates among cell lines sharing the same driver oncogene following treatment with the corresponding kinase inhibitor. There was a wide range of kinase inhibitor-induced apoptosis despite comparable inhibition of the target and associated downstream signaling pathways. Surprisingly, pretreatment RNA levels of the BH3-only pro-apoptotic BIM strongly predicted the capacity of EGFR, HER2, and PI3K inhibitors to induce apoptosis in EGFR-mutant, HER2-amplified, and PIK3CA-mutant cancers, respectively, but BIM levels did not predict responsiveness to standard chemotherapies. Furthermore, BIM RNA levels in EGFR-mutant lung cancer specimens predicted response and duration of clinical benefit from EGFR inhibitors. These findings suggest assessment of BIM levels in treatment-naïve tumor biopsies may indicate the degree of benefit from single-agent kinase inhibitors in multiple oncogene-addiction paradigms.


Proceedings of the National Academy of Sciences of the United States of America | 2013

PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1

Hiromichi Ebi; Carlotta Costa; Anthony C. Faber; Madhuri Nishtala; Hiroshi Kotani; Dejan Juric; Patricia Della Pelle; Youngchul Song; Seiji Yano; Mari Mino-Kenudson; Cyril H. Benes; Jeffrey A. Engelman

Significance Genetic alterations targeting the PI3K pathway are highly prevalent in breast cancers. Although breast cancers harboring PIK3CA mutation and HER2 amplification have enhanced sensitivity to PI3K inhibitors, the mechanism underlying this sensitivity is unknown. This study shows that PI3K inhibitors suppress MEK/ERK pathway in these cancers, and inhibition of both AKT and ERK pathways is necessary for maximal antitumoral activity. We elucidate a unique mechanistic link between PI3K and ERK via PI3K-dependent regulation of P-Rex1, which in turn regulates the Rac1/PAK/c-RAF/MEK/ERK pathway. Importantly, expression levels of the Rac-GEF, P-Rex1, correlate with sensitivity to PI3K inhibitors among these breast cancer cell lines, indicating its potential utility as a biomarker to identify cancers that will respond to PI3K inhibitors. The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers.


Cancer Cell | 2015

Measurement of PIP3 Levels Reveals an Unexpected Role for p110β in Early Adaptive Responses to p110α-Specific Inhibitors in Luminal Breast Cancer

Carlotta Costa; Hiromichi Ebi; Miriam Martini; Sean A. Beausoleil; Anthony C. Faber; Charles T. Jakubik; Alan Huang; Youzhen Wang; Madhuri Nishtala; Ben Hall; Klarisa Rikova; Jean Zhao; Emilio Hirsch; Cyril H. Benes; Jeffrey A. Engelman

BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110a), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of p110α inhibition is mitigated by rapid re-accumulation of the PI3K product PIP3 produced by the p110β isoform. Importantly, the reactivation of PI3K mediated by p110β does not invariably restore AKT phosphorylation, demonstrating the limitations of using phospho-AKT as a surrogate to measure PI3K activation. Consistently, we show that the addition of the p110β inhibitor to BYL719 prevents the PIP3 rebound and induces greater antitumor efficacy in HER2-amplified and PIK3CA mutant cancers.


Science Translational Medicine | 2013

TORC1 Suppression Predicts Responsiveness to RAF and MEK Inhibition in BRAF-Mutant Melanoma

Ryan B. Corcoran; Stephen M. Rothenberg; Aaron N. Hata; Anthony C. Faber; Adriano Piris; Rosalynn M. Nazarian; Ronald D. Brown; Jason T. Godfrey; Daniel Winokur; John Walsh; Mari Mino-Kenudson; Shyamala Maheswaran; Jeffrey Settleman; Jennifer A. Wargo; Keith T. Flaherty; Daniel A. Haber; Jeffrey A. Engelman

Suppression of TORC1 activity after treatment with RAF or MEK inhibitors predicts drug sensitivity in BRAF-mutant melanoma and can be monitored in patients. Caveat mTOR In recent years, numerous new drugs have been developed to take advantage of specific molecular changes in cancer cells. Unfortunately, tumors are often a step ahead of the scientists, becoming resistant to these targeted drugs just when they seem to be working perfectly. Now, two groups of researchers have developed rational combination treatments that block resistance to targeted cancer drugs by inhibiting mTOR. Elkabets and coauthors were working on breast cancer, where the PIK3CA gene is frequently mutated. Inhibitors of PI3K (the protein product of PIK3CA) are currently in clinical trials, but some of the cancers are resistant to these drugs. The authors have discovered that breast cancers resistant to the PI3K inhibitor BYL719 had persistently active mTOR signaling, both in cultured cell lines and in patient tumors. Adding an mTOR inhibitor to the treatment regimen could reverse the resistance and kill the tumor cells. Corcoran et al. found a similar mTOR-dependent drug resistance mechanism to be active in melanoma as well. BRAF-mutant melanomas, the most common type, are frequently treated with RAF and MEK inhibitors, but only with mixed results, because melanomas quickly develop resistance to these drugs. Now, the authors have shown that drug-resistant melanomas also have persistent activation of mTOR, and adding an mTOR inhibitor to the treatment regimen can block drug resistance and kill the cancer cells. In both studies, the activation of mTOR in drug-resistant tumors has been confirmed in human patients, but the combination treatments have only been tested in cells and in mouse models thus far. Thus, the next critical step would be to confirm that adding mTOR inhibition to treatment regimens for these cancers is effective in the clinical setting as well. Some mTOR inhibitors are already available for use in patients, so hopefully soon mTOR activation will not be something to beware of, but something to monitor and target with specific drugs. RAF and MEK (mitogen-activated or extracellular signal–regulated protein kinase kinase) inhibitors are effective in treating patients with BRAF-mutant melanoma. However, most responses are partial and short-lived, and many patients fail to respond at all. We found that suppression of TORC1 activity in response to RAF or MEK inhibitors, as measured by decreased phosphorylation of ribosomal protein S6 (P-S6), effectively predicted induction of cell death by the inhibitor in BRAF-mutant melanoma cell lines. In resistant melanomas, TORC1 activity was maintained after treatment with RAF or MEK inhibitors, in some cases despite robust suppression of mitogen-activated protein kinase (MAPK) signaling. In in vivo mouse models, suppression of TORC1 after MAPK inhibition was necessary for induction of apoptosis and tumor response. Finally, in paired biopsies obtained from patients with BRAF-mutant melanoma before treatment and after initiation of RAF inhibitor therapy, P-S6 suppression predicted significantly improved progression-free survival. Such a change in P-S6 could be readily monitored in real time by serial fine-needle aspiration biopsies, making quantitation of P-S6 a valuable biomarker to guide treatment in BRAF-mutant melanoma.

Collaboration


Dive into the Anthony C. Faber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantinos V. Floros

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge