Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlotta Costa is active.

Publication


Featured researches published by Carlotta Costa.


Science Signaling | 2008

Phosphoinositide 3-kinase p110beta activity : key role in metabolism and mammary gland cancer but not development

Elisa Ciraolo; Manuela Iezzi; Romina Marone; Stefano Marengo; Claudia Curcio; Carlotta Costa; Ornella Azzolino; Cristiano Gonella; Cristina Rubinetto; Haiyan Wu; Walter Dastrù; Erica Martin; Lorenzo Silengo; Fiorella Altruda; Emilia Turco; Letizia Lanzetti; Piero Musiani; Thomas Rückle; Christian Rommel; Jonathan M. Backer; Guido Forni; Matthias P. Wymann; Emilio Hirsch

The phosphoinositide 3-kinase p110β subunit has noncatalytic functions; its catalytic activity is pertinent to both diabetes and cancer. Unveiling p110β Phosphatidylinositide 3-kinase (PI3K) signaling has been implicated in the response to insulin and various growth factors. However, the specific role of the β isoform of the PI3K catalytic subunit (p110β) has been unclear. Analysis of mouse mutants carrying a catalytically inactive form of p110β reveals that it possesses noncatalytic as well as catalytic functions. Moreover, its catalytic activity is involved in sustaining the response to insulin signaling and in mediating forms of breast cancer associated with oncogenic epidermal growth factor signaling. The phosphoinositide 3-kinase (PI3K) pathway crucially controls metabolism and cell growth. Although different PI3K catalytic subunits are known to play distinct roles, the specific in vivo function of p110β (the product of the PIK3CB gene) is not clear. Here, we show that mouse mutants expressing a catalytically inactive PIK3CBK805R mutant survived to adulthood but showed growth retardation and developed mild insulin resistance with age. Pharmacological and genetic analyses of p110β function revealed that p110β catalytic activity is required for PI3K signaling downstream of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors as well as to sustain long-term insulin signaling. In addition, PIK3CBK805R mice were protected in a model of ERBB2-driven tumor development. These findings indicate an unexpected role for p110β catalytic activity in diabetes and cancer, opening potential avenues for therapeutic intervention.


Nature Medicine | 2016

Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition

Aaron N. Hata; Matthew J. Niederst; Hannah L. Archibald; Maria Gomez-Caraballo; Faria Siddiqui; Hillary Mulvey; Yosef E. Maruvka; Fei Ji; Hyo Eun C Bhang; Viveksagar Krishnamurthy Radhakrishna; Giulia Siravegna; Haichuan Hu; Sana Raoof; Elizabeth L. Lockerman; Anuj Kalsy; Dana Lee; Celina L. Keating; David A. Ruddy; Leah Damon; Adam S. Crystal; Carlotta Costa; Zofia Piotrowska; Alberto Bardelli; Anthony John Iafrate; Ruslan I. Sadreyev; Frank Stegmeier; Gad Getz; Lecia V. Sequist; Anthony C. Faber; Jeffrey A. Engelman

Although mechanisms of acquired resistance of epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancers to EGFR inhibitors have been identified, little is known about how resistant clones evolve during drug therapy. Here we observe that acquired resistance caused by the EGFRT790M gatekeeper mutation can occur either by selection of pre-existing EGFRT790M-positive clones or via genetic evolution of initially EGFRT790M-negative drug-tolerant cells. The path to resistance impacts the biology of the resistant clone, as those that evolved from drug-tolerant cells had a diminished apoptotic response to third-generation EGFR inhibitors that target EGFRT790M; treatment with navitoclax, an inhibitor of the anti-apoptotic factors BCL-xL and BCL-2 restored sensitivity. We corroborated these findings using cultures derived directly from EGFR inhibitor–resistant patient tumors. These findings provide evidence that clinically relevant drug-resistant cancer cells can both pre-exist and evolve from drug-tolerant cells, and they point to therapeutic opportunities to prevent or overcome resistance in the clinic.


Cancer Cell | 2014

CDK 4/6 Inhibitors Sensitize PIK3CA Mutant Breast Cancer to PI3K Inhibitors

Sadhna Vora; Dejan Juric; Nayoon Kim; Mari Mino-Kenudson; Tiffany Huynh; Carlotta Costa; Elizabeth L. Lockerman; Sarah F. Pollack; Manway Liu; Xiaoyan Li; Joseph Lehar; Marion Wiesmann; Markus Wartmann; Yan Chen; Z. Alexander Cao; Maria Pinzon-Ortiz; Sunkyu Kim; Robert Schlegel; Alan Huang; Jeffrey A. Engelman

Activation of the phosphoinositide 3-kinase (PI3K) pathway occurs frequently in breast cancer. However, clinical results of single-agent PI3K inhibitors have been modest to date. A combinatorial drug screen on multiple PIK3CA mutant cancers with decreased sensitivity to PI3K inhibitors revealed that combined CDK 4/6-PI3K inhibition synergistically reduces cell viability. Laboratory studies revealed that sensitive cancers suppress RB phosphorylation upon treatment with single-agent PI3K inhibitors but cancers with reduced sensitivity fail to do so. Similarly, patients tumors that responded to the PI3K inhibitor BYL719 demonstrated suppression of pRB, while nonresponding tumors showed sustained or increased levels of pRB. Importantly, the combination of PI3K and CDK 4/6 inhibitors overcomes intrinsic and adaptive resistance leading to tumor regressions in PIK3CA mutant xenografts.


Cancer Research | 2012

MEK inhibition leads to PI3K/AKT activation by relieving a negative feedback on ERBB receptors

Alexa B. Turke; Youngchul Song; Carlotta Costa; Rebecca S. Cook; Carlos L. Arteaga; John M. Asara; Jeffrey A. Engelman

The phosphoinositide 3-kinase (PI3K)/AKT and RAF/MEK/ERK signaling pathways are activated in a wide range of human cancers. In many cases, concomitant inhibition of both pathways is necessary to block proliferation and induce cell death and tumor shrinkage. Several feedback systems have been described in which inhibition of one intracellular pathway leads to activation of a parallel signaling pathway, thereby decreasing the effectiveness of single-agent targeted therapies. In this study, we describe a feedback mechanism in which MEK inhibition leads to activation of PI3K/AKT signaling in EGFR and HER2-driven cancers. We found that MEK inhibitor-induced activation of PI3K/AKT resulted from hyperactivation of ERBB3 as a result of the loss of an inhibitory threonine phosphorylation in the conserved juxtamembrane domains of EGFR and HER2. Mutation of this amino acid led to increased ERBB receptor activation and upregulation of the ERBB3/PI3K/AKT signaling pathway, which was no longer responsive to MEK inhibition. Taken together, these results elucidate an important, dominant feedback network regulating central oncogenic pathways in human cancer.


Nature Communications | 2015

RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer

Matthew J. Niederst; Lecia V. Sequist; John T. Poirier; Craig H. Mermel; Elizabeth L. Lockerman; Angel R. Garcia; Ryohei Katayama; Carlotta Costa; Kenneth N. Ross; Teresa Moran; Emily Howe; L. Fulton; Hillary Mulvey; Lindsay A. Bernardo; Farhiya Mohamoud; Norikatsu Miyoshi; Paul A. VanderLaan; Daniel B. Costa; Pasi A. Jänne; Darrell R. Borger; Sridhar Ramaswamy; Toshi Shioda; Anthony John Iafrate; Gad Getz; Charles M. Rudin; Mari Mino-Kenudson; Jeffrey A. Engelman

Tyrosine kinase inhibitors are effective treatments for non-small-cell lung cancers (NSCLCs) with epidermal growth factor receptor (EGFR) mutations. However, relapse typically occurs after an average of 1 year of continuous treatment. A fundamental histological transformation from NSCLC to small-cell lung cancer (SCLC) is observed in a subset of the resistant cancers, but the molecular changes associated with this transformation remain unknown. Analysis of tumour samples and cell lines derived from resistant EGFR mutant patients revealed that Retinoblastoma (RB) is lost in 100% of these SCLC transformed cases, but rarely in those that remain NSCLC. Further, increased neuroendocrine marker and decreased EGFR expression as well as greater sensitivity to BCL2 family inhibition are observed in resistant SCLC transformed cancers compared with resistant NSCLCs. Together, these findings suggest that this subset of resistant cancers ultimately adopt many of the molecular and phenotypic characteristics of classical SCLC.


Journal of Endocrinology | 2007

Phosphoinositide 3-kinases as a common platform for multi-hormone signaling

Emilio Hirsch; Carlotta Costa; Elisa Ciraolo

In multicellular organisms, concerted actions of different tissues are regulated inside single cells by signal transduction mechanisms that, subsequently to hormones sensing, trigger intracellular responses. In recent years, increasing evidence indicates phosphoinositide 3-kinases (PI3K) as crucial signal transducing elements that regulate communication across the plasma membrane. PI3K generate lipid secondary messengers that trigger a plethora of intracellular responses ranging from metabolic regulation to cell proliferation, survival, and migration. The growing number of hormones that relay signals by activating PI3K suggests not only multiple roles of these enzymes in the regulation of different physiological responses but also a way by which common reactions can be stimulated by different inputs. This review will thus focus on the different pathways that converge on PI3K activation, with particular attention to the paradigmatic PI3K involvement in insulin signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2013

PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1

Hiromichi Ebi; Carlotta Costa; Anthony C. Faber; Madhuri Nishtala; Hiroshi Kotani; Dejan Juric; Patricia Della Pelle; Youngchul Song; Seiji Yano; Mari Mino-Kenudson; Cyril H. Benes; Jeffrey A. Engelman

Significance Genetic alterations targeting the PI3K pathway are highly prevalent in breast cancers. Although breast cancers harboring PIK3CA mutation and HER2 amplification have enhanced sensitivity to PI3K inhibitors, the mechanism underlying this sensitivity is unknown. This study shows that PI3K inhibitors suppress MEK/ERK pathway in these cancers, and inhibition of both AKT and ERK pathways is necessary for maximal antitumoral activity. We elucidate a unique mechanistic link between PI3K and ERK via PI3K-dependent regulation of P-Rex1, which in turn regulates the Rac1/PAK/c-RAF/MEK/ERK pathway. Importantly, expression levels of the Rac-GEF, P-Rex1, correlate with sensitivity to PI3K inhibitors among these breast cancer cell lines, indicating its potential utility as a biomarker to identify cancers that will respond to PI3K inhibitors. The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers.


Cancer Cell | 2015

Measurement of PIP3 Levels Reveals an Unexpected Role for p110β in Early Adaptive Responses to p110α-Specific Inhibitors in Luminal Breast Cancer

Carlotta Costa; Hiromichi Ebi; Miriam Martini; Sean A. Beausoleil; Anthony C. Faber; Charles T. Jakubik; Alan Huang; Youzhen Wang; Madhuri Nishtala; Ben Hall; Klarisa Rikova; Jean Zhao; Emilio Hirsch; Cyril H. Benes; Jeffrey A. Engelman

BYL719, which selectively inhibits the alpha isoform of the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110a), is currently in clinical trials for the treatment of solid tumors, especially luminal breast cancers with PIK3CA mutations and/or HER2 amplification. This study reveals that, even among these sensitive cancers, the initial efficacy of p110α inhibition is mitigated by rapid re-accumulation of the PI3K product PIP3 produced by the p110β isoform. Importantly, the reactivation of PI3K mediated by p110β does not invariably restore AKT phosphorylation, demonstrating the limitations of using phospho-AKT as a surrogate to measure PI3K activation. Consistently, we show that the addition of the p110β inhibitor to BYL719 prevents the PIP3 rebound and induces greater antitumor efficacy in HER2-amplified and PIK3CA mutant cancers.


Developmental Cell | 2014

PI3K Class II α Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function

Irene Franco; Federico Gulluni; Carlo Cosimo Campa; Carlotta Costa; Jean Piero Margaria; Elisa Ciraolo; Miriam Martini; Daniel Monteyne; Elisa De Luca; Giulia Germena; York Posor; Tania Maffucci; Stefano Marengo; Volker Haucke; Marco Falasca; David Perez-Morga; Alessandra Boletta; Giorgio R. Merlo; Emilio Hirsch

Summary Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.


Cancer Discovery | 2014

mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1

Anthony C. Faber; Erin M. Coffee; Carlotta Costa; Anahita Dastur; Hiromichi Ebi; Aaron N. Hata; Alan T. Yeo; Elena J. Edelman; Youngchul Song; Ah Ting Tam; Jessica L. Boisvert; Randy J. Milano; Jatin Roper; David P. Kodack; Rakesh K. Jain; Ryan B. Corcoran; Miguel Rivera; Sridhar Ramaswamy; Kenneth E. Hung; Cyril H. Benes; Jeffrey A. Engelman

Colorectal cancers harboring KRAS or BRAF mutations are refractory to current targeted therapies. Using data from a high-throughput drug screen, we have developed a novel therapeutic strategy that targets the apoptotic machinery using the BCL-2 family inhibitor ABT-263 (navitoclax) in combination with a TORC1/2 inhibitor, AZD8055. This combination leads to efficient apoptosis specifically in KRAS- and BRAF-mutant but not wild-type (WT) colorectal cancer cells. This specific susceptibility results from TORC1/2 inhibition leading to suppression of MCL-1 expression in mutant, but not WT, colorectal cancers, leading to abrogation of BIM/MCL-1 complexes. This combination strategy leads to tumor regressions in both KRAS-mutant colorectal cancer xenograft and genetically engineered mouse models of colorectal cancer, but not in the corresponding KRAS-WT colorectal cancer models. These data suggest that the combination of BCL-2/BCL-XL inhibitors with TORC1/2 inhibitors constitutes a promising targeted therapy strategy to treat these recalcitrant cancers.

Collaboration


Dive into the Carlotta Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony C. Faber

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge