Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony D. Kelleher is active.

Publication


Featured researches published by Anthony D. Kelleher.


Journal of Experimental Medicine | 2006

Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells

Nabila Seddiki; Brigitte Santner-Nanan; Jeff Martinson; John Zaunders; Sarah C. Sasson; Alan Landay; Michael J. Solomon; Warwick Selby; Stephen I. Alexander; Ralph Nanan; Anthony D. Kelleher; Barbara Fazekas de St Groth

Abnormalities in CD4+CD25+Foxp3+ regulatory T (T reg) cells have been implicated in susceptibility to allergic, autoimmune, and immunoinflammatory conditions. However, phenotypic and functional assessment of human T reg cells has been hampered by difficulty in distinguishing between CD25-expressing activated and regulatory T cells. Here, we show that expression of CD127, the α chain of the interleukin-7 receptor, allows an unambiguous flow cytometry–based distinction to be made between CD127lo T reg cells and CD127hi conventional T cells within the CD25+CD45RO+RA− effector/memory and CD45RA+RO− naive compartments in peripheral blood and lymph node. In healthy volunteers, peripheral blood CD25+CD127lo cells comprised 6.35 ± 0.26% of CD4+ T cells, of which 2.05 ± 0.14% expressed the naive subset marker CD45RA. Expression of FoxP3 protein and the CD127lo phenotype were highly correlated within the CD4+CD25+ population. Moreover, both effector/memory and naive CD25+CD127lo cells manifested suppressive activity in vitro, whereas CD25+CD127hi cells did not. Cell surface expression of CD127 therefore allows accurate estimation of T reg cell numbers and isolation of pure populations for in vitro studies and should contribute to our understanding of regulatory abnormalities in immunopathic diseases.


Journal of Immunology | 2002

Characterization of CD4+ CTLs Ex Vivo

Victor Appay; John Zaunders; Laura Papagno; Julian Sutton; Angel B. Jaramillo; Anele Waters; Philippa Easterbrook; Pat Grey; Don Smith; Andrew J. McMichael; David A. Cooper; Sarah Rowland-Jones; Anthony D. Kelleher

The cytotoxic potential of CD8+ T cells and NK cells plays a crucial role in the immune response to pathogens. Although in vitro studies have reported that CD4+ T cells are also able to mediate perforin-mediated killing, the in vivo existence and relevance of cytotoxic CD4+ T cells have been the subject of debate. Here we show that a population of CD4+ perforin+ T cells is present in the circulation at low numbers in healthy donors and is markedly expanded in donors with chronic viral infections, in particular HIV infection, at all stages of the disease, including early primary infection. Ex vivo analysis shows that these cells have cytotoxic potential mediated through the release of perforin. In comparison with more classical CD4+ T cells, this subset displays a distinct surface phenotype and functional profile most consistent with end-stage differentiated T cells and include Ag experienced CD4+ T cells. The existence of CD4+ cytotoxic T cells in vivo at relatively high levels in chronic viral infection suggests a role in the immune response.


Nature Immunology | 2007

Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction

Daniel E. Kaufmann; Daniel G. Kavanagh; Florencia Pereyra; John Zaunders; Elizabeth W. Mackey; Toshiyuki Miura; Sarah Palmer; Mark A. Brockman; Almas Rathod; Alicja Piechocka-Trocha; Brett Baker; Baogong Zhu; Sylvie Le Gall; Michael T. Waring; Ryan Ahern; Kristin Moss; Anthony D. Kelleher; John M. Coffin; Gordon J. Freeman; Eric S. Rosenberg; Bruce D. Walker

In progressive viral infection, antiviral T cell function is impaired by poorly understood mechanisms. Here we report that the inhibitory immunoregulatory receptor CTLA-4 was selectively upregulated in human immunodeficiency virus (HIV)–specific CD4+ T cells but not CD8+ T cells in all categories of HIV-infected subjects evaluated, with the exception of rare people able to control viremia in the absence of antiretroviral therapy. CTLA-4 expression correlated positively with disease progression and negatively with the capacity of CD4+ T cells to produce interleukin 2 in response to viral antigen. Most HIV-specific CD4+ T cells coexpressed CTLA-4 and another inhibitory immunoregulatory receptor, PD-1. In vitro blockade of CTLA-4 augmented HIV-specific CD4+ T cell function. These data, indicating a reversible immunoregulatory pathway selectively associated with CD4+ T cell dysfunction, provide a potential target for immunotherapy in HIV-infected patients.


Journal of Virology | 2007

Escape from the Dominant HLA-B27-Restricted Cytotoxic T-Lymphocyte Response in Gag Is Associated with a Dramatic Reduction in Human Immunodeficiency Virus Type 1 Replication

Arne Schneidewind; Mark A. Brockman; Ruifeng Yang; Rahma I. Adam; Bin Li; Sylvie Le Gall; Charles R. Rinaldo; Sharon L. Craggs; Rachel L. Allgaier; Karen A. Power; Thomas Kuntzen; Chang-Shung Tung; Montiago X. LaBute; Sandra M. Mueller; Thomas Harrer; Andrew J. McMichael; Philip J. R. Goulder; Christopher Aiken; Christian Brander; Anthony D. Kelleher; Todd M. Allen

ABSTRACT Human leukocyte antigen (HLA)-B27-positive subjects are uncommon in their ability to control infection with human immunodeficiency virus type 1 (HIV-1). However, late viral escape from a narrowly directed immunodominant Gag-specific CD8+ T-lymphocyte (CTL) response has been linked to AIDS progression in these individuals. Identifying the mechanism of the immune-mediated control may provide critical insights into HIV-1 vaccine development. Here, we illustrate that the CTL escape mutation R264K in the HLA-B27-restricted KK10 epitope in the capsid resulted in a significant defect in viral replication in vitro. The R264K variant was impaired in generating late reverse transcription products, indicating that replication was blocked at a postentry step. Notably, the R264K mutation was associated in vivo with the development of a rare secondary mutation, S173A, which restored viral replication in vitro. Furthermore, infectivity of the R264K variant was rescued by the addition of cyclosporine A or infection of a cyclophilin A-deficient cell line. These data demonstrate a severe functional defect imposed by the R264K mutation during an early step in viral replication that is likely due to the inability of this variant to replicate efficiently in the presence of normal levels of cyclophilin A. We conclude that the impact of the R264K substitution on capsid structure constrains viral escape and enables long-term maintenance of the dominant CTL response against B27-KK10, providing an explanation for the protective effect of HLA-B27 during HIV infection.


AIDS | 2007

Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase

John M. Murray; Sean Emery; Anthony D. Kelleher; Matthew Law; Joshua Chen; Daria J. Hazuda; Bach-Yen T. Nguyen; Hedy Teppler; David A. Cooper

Objective:Raltegravir (MK-0518) belongs to the new class of HIV integrase inhibitors. To date, there have been no reports investigating the potential for differential effects on viral dynamics with integrase inhibitors relative to current antiretroviral drugs. Methods:Patients in this phase II study (P004) were antiretroviral treatment naive. Part 1 of this study compared monotherapy with raltegravir (100 mg, 200 mg, 400 mg, or 600 mg twice daily) with placebo over 10 days. In part 2, patients were enrolled for 48 weeks of combination therapy, with randomization to one of the four dosages of raltegravir or to efavirenz, in addition to tenofovir and lamivudine. Mathematical models were used to investigate processes underlying viral dynamics. Results:From day 15 through to day 57, individuals in the raltegravir arm were significantly more likely to have HIV RNA < 50 copies/ml (P ≤ 0.047). Plasma viral loads were 70% lower at initiation of second-phase decay for individuals taking raltegravir than for those taking efavirenz (P < 0.0001). This challenges the current hypothesis that second-phase virus originates from infected long-lived cells, as an integrase inhibitor should not impact on viral production from this cell population. Mathematical modeling supported two hypotheses as consistent with these observations: (i) that second-phase virus arises from cells newly infected by long-lived infected cells and (2) that it arises from activation of latently infected cells with full-length unintegrated HIV DNA. Conclusions:These observations challenge the current understanding of HIV-1 turnover and compartmentalization. They also indicate the promise of this new integrase inhibitor raltegravir.


Journal of Virology | 2009

Human Immunodeficiency Virus Type 1-Specific CD8+ T-Cell Responses during Primary Infection Are Major Determinants of the Viral Set Point and Loss of CD4+ T Cells

Hendrik Streeck; Jonathan S. Jolin; Ying Qi; Bader Yassine-Diab; Randall C. Johnson; Douglas S. Kwon; Marylyn M. Addo; Chanson J. Brumme; Jean-Pierre Routy; Susan J. Little; Heiko Jessen; Anthony D. Kelleher; Frederick Hecht; Rafick-Pierre Sekaly; Eric S. Rosenberg; Bruce D. Walker; Mary Carrington; Marcus Altfeld

ABSTRACT Primary HIV-1 infection (PHI) is marked by a flu-like syndrome and high levels of viremia that decrease to a viral set point with the first emergence of virus-specific CD8+ T-cell responses. Here, we investigated in a large cohort of 527 subjects the immunodominance pattern of the first virus-specific cytotoxic T-lymphocyte (CTL) responses developed during PHI in comparison to CTL responses in chronic infection and demonstrated a distinct relationship between the early virus-specific CTL responses and the viral set point, as well as the slope of CD4+ T-cell decline. CTL responses during PHI followed clear hierarchical immunodominance patterns that were lost during the transition to chronic infection. Importantly, the immunodominance patterns of human immunodeficiency virus type 1 (HIV-1)-specific CTL responses detected in primary, but not in chronic, HIV-1 infection were significantly associated with the subsequent set point of viral replication. Moreover, the preservation of the initial CD8+ T-cell immunodominance patterns from the acute into the chronic phase of infection was significantly associated with slower CD4+ T-cell decline. Taken together, these data show that the specificity of the initial CTL response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.


Journal of Virology | 2008

Marked Epitope- and Allele-Specific Differences in Rates of Mutation in Human Immunodeficiency Type 1 (HIV-1) Gag, Pol, and Nef Cytotoxic T-Lymphocyte Epitopes in Acute/Early HIV-1 Infection

Zabrina L. Brumme; Chanson J. Brumme; Jonathan M. Carlson; Hendrik Streeck; M. John; Quentin Eichbaum; Brian L. Block; Brett Baker; Carl M. Kadie; Martin Markowitz; Heiko Jessen; Anthony D. Kelleher; Eric S. Rosenberg; John M. Kaldor; Yuko Yuki; Mary Carrington; Todd M. Allen; S. Mallal; Marcus Altfeld; David Heckerman; Bruce D. Walker

ABSTRACT During acute human immunodeficiency virus type 1 (HIV-1) infection, early host cellular immune responses drive viral evolution. The rates and extent of these mutations, however, remain incompletely characterized. In a cohort of 98 individuals newly infected with HIV-1 subtype B, we longitudinally characterized the rates and extent of HLA-mediated escape and reversion in Gag, Pol, and Nef using a rational definition of HLA-attributable mutation based on the analysis of a large independent subtype B data set. We demonstrate rapid and dramatic HIV evolution in response to immune pressures that in general reflect established cytotoxic T-lymphocyte (CTL) response hierarchies in early infection. On a population level, HLA-driven evolution was observed in ∼80% of published CTL epitopes. Five of the 10 most rapidly evolving epitopes were restricted by protective HLA alleles (HLA-B*13/B*51/B*57/B*5801; P = 0.01), supporting the importance of a strong early CTL response in HIV control. Consistent with known fitness costs of escape, B*57-associated mutations in Gag were among the most rapidly reverting positions upon transmission to non-B*57-expressing individuals, whereas many other HLA-associated polymorphisms displayed slow or negligible reversion. Overall, an estimated minimum of 30% of observed substitutions in Gag/Pol and 60% in Nef were attributable to HLA-associated escape and reversion events. Results underscore the dominant role of immune pressures in driving early within-host HIV evolution. Dramatic differences in escape and reversion rates across codons, genes, and HLA restrictions are observed, highlighting the complexity of viral adaptation to the host immune response.


The Journal of Infectious Diseases | 2005

In Vivo, Nucleoside Reverse-Transcriptase Inhibitors Alter Expression of Both Mitochondrial and Lipid Metabolism Genes in the Absence of Depletion of Mitochondrial DNA

Patrick W. G. Mallon; Patrick Unemori; Rebecca Sedwell; Adrienne Morey; Martina Rafferty; Kenneth M. Williams; Donald J. Chisholm; Katherine Samaras; Sean Emery; Anthony D. Kelleher; David A. Cooper; Andrew Carr

BACKGROUND Nucleoside reverse-transcriptase inhibitors (NRTIs), which are used to treat human immunodeficiency virus (HIV) infection, can cause mitochondrial dysfunction and have been associated with lipoatrophy. The effects of this mitochondrial dysfunction on lipid metabolism, at a molecular level in vivo, have not been described. METHODS We examined early changes (by 2 weeks after initiation of therapy) in expression of mitochondrial and nuclear genes in adipose tissue from 20 HIV-negative subjects randomized to receive dual-NRTI therapy (zidovudine/lamivudine or stavudine/lamivudine) for 6 weeks. RESULTS We observed decreased transcription of mitochondrial (mt) RNA without significant depletion of mtDNA. Decreases in mtRNA coincided with simultaneous up-regulation of nuclear genes involved in transcriptional regulation of mtRNA (NRF1 and TFAM) and oxidation of fatty acids (PPARA and LPL), whereas PPARG, which is important for differentiation of adipose tissue, was down-regulated. Many nuclear changes correlated with changes in peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC1), suggesting a central role for PGC1 in nuclear responses to mitochondrial dysfunction. Expression of peripheral blood monocyte mtRNA also decreased, suggesting that monocytes may be surrogates for NRTI-induced mitochondrial dysfunction in other tissues. CONCLUSIONS Independent of HIV, NRTIs decrease transcription of mtRNA in vivo. The absence of depletion of mtDNA suggests that NRTIs cause mitochondrial dysfunction by means other than through inhibition of DNA polymerase- gamma , whereas disruption of expression of lipid metabolism genes offers an explanation for NRTI-induced lipoatrophy.


Journal of Virology | 2007

Rapid Reversion of Sequence Polymorphisms Dominates Early Human Immunodeficiency Virus Type 1 Evolution

Bin Li; Adrianne D. Gladden; Marcus Altfeld; John M. Kaldor; David A. Cooper; Anthony D. Kelleher; Todd M. Allen

ABSTRACT The error-prone replication of human immunodeficiency virus type 1 (HIV-1) enables it to continuously evade host CD8+ T-cell responses. The observed transmission, and potential accumulation, of CD8+ T-cell escape mutations in the population may suggest a gradual adaptation of HIV-1 to immune pressures. Recent reports, however, have highlighted the propensity of some escape mutations to revert upon transmission to a new host in order to restore efficient replication capacity. To more specifically address the role of reversions in early HIV-1 evolution, we examined sequence polymorphisms arising across the HIV-1 genome in seven subjects followed longitudinally 1 year from primary infection. As expected, numerous nonsynonymous mutations were associated with described CD8+ T-cell epitopes, supporting a prominent role for cellular immune responses in driving early HIV-1 evolution. Strikingly, however, a substantial proportion of substitutions (42%) reverted toward the clade B consensus sequence, with nearly one-quarter of them located within defined CD8 epitopes not restricted by the contemporary hosts HLA. More importantly, these reversions arose significantly faster than forward mutations, with the most rapidly reverting mutations preferentially arising within structurally conserved residues. These data suggest that many transmitted mutations likely incur a fitness cost that is recovered through retrieval of an optimal, or ancestral, form of the virus. The propensity of mutations to revert may limit the accumulation of immune pressure-driven mutations in the population, thus preserving critical CD8+ T-cell epitopes as vaccine targets, and argue against an unremitting adaptation of HIV-1 to host immune pressures.


The New England Journal of Medicine | 2013

Short-course antiretroviral therapy in primary HIV infection.

Sarah Fidler; Kholoud Porter; Fiona M. Ewings; John Frater; Gita Ramjee; David A. Cooper; Helen Rees; Martin Fisher; Mauro Schechter; Pontiano Kaleebu; Giuseppe Tambussi; Sabine Kinloch; José M. Miró; Anthony D. Kelleher; Myra O. McClure; Steve Kaye; Michelle Gabriel; Rodney E. Phillips; Jonathan Weber; Abdel Babiker

BACKGROUND Short-course antiretroviral therapy (ART) in primary human immunodeficiency virus (HIV) infection may delay disease progression but has not been adequately evaluated. METHODS We randomly assigned adults with primary HIV infection to ART for 48 weeks, ART for 12 weeks, or no ART (standard of care), with treatment initiated within 6 months after seroconversion. The primary end point was a CD4+ count of less than 350 cells per cubic millimeter or long-term ART initiation. RESULTS A total of 366 participants (60% men) underwent randomization to 48-week ART (123 participants), 12-week ART (120), or standard care (123), with an average follow-up of 4.2 years. The primary end point was reached in 50% of the 48-week ART group, as compared with 61% in each of the 12-week ART and standard-care groups. The average hazard ratio was 0.63 (95% confidence interval [CI], 0.45 to 0.90; P=0.01) for 48-week ART as compared with standard care and was 0.93 (95% CI, 0.67 to 1.29; P=0.67) for 12-week ART as compared with standard care. The proportion of participants who had a CD4+ count of less than 350 cells per cubic millimeter was 28% in the 48-week ART group, 40% in the 12-week group, and 40% in the standard-care group. Corresponding values for long-term ART initiation were 22%, 21%, and 22%. The median time to the primary end point was 65 weeks (95% CI, 17 to 114) longer with 48-week ART than with standard care. Post hoc analysis identified a trend toward a greater interval between ART initiation and the primary end point the closer that ART was initiated to estimated seroconversion (P=0.09), and 48-week ART conferred a reduction in the HIV RNA level of 0.44 log(10) copies per milliliter (95% CI, 0.25 to 0.64) 36 weeks after the completion of short-course therapy. There were no significant between-group differences in the incidence of the acquired immunodeficiency syndrome, death, or serious adverse events. CONCLUSIONS A 48-week course of ART in patients with primary HIV infection delayed disease progression, although not significantly longer than the duration of the treatment. There was no evidence of adverse effects of ART interruption on the clinical outcome. (Funded by the Wellcome Trust; SPARTAC Controlled-Trials.com number, ISRCTN76742797, and EudraCT number, 2004-000446-20.).

Collaboration


Dive into the Anthony D. Kelleher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Zaunders

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar

Sean Emery

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Kazuo Suzuki

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Pett

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kersten K. Koelsch

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Andrew Carr

St. Vincent's Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge