Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen J. Kent is active.

Publication


Featured researches published by Stephen J. Kent.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation

Laura K. Mackay; Angus T. Stock; Joel Z. Ma; Claerwen M. Jones; Stephen J. Kent; Scott N. Mueller; William R. Heath; Francis R. Carbone; Thomas Gebhardt

Although circulating memory T cells provide enhanced protection against pathogen challenge, they often fail to do so if infection is localized to peripheral or extralymphoid compartments. In those cases, it is T cells already resident at the site of virus challenge that offer superior immune protection. These tissue-resident memory T (TRM) cells are identified by their expression of the α-chain from the integrin αE(CD103)β7, and can exist in disequilibrium with the blood, remaining in the local environment long after peripheral infections subside. In this study, we demonstrate that long-lived intraepithelial CD103+CD8+ TRM cells can be generated in the absence of in situ antigen recognition. Local inflammation in skin and mucosa alone resulted in enhanced recruitment of effector populations and their conversion to the TRM phenotype. The CD8+ TRM cells lodged in these barrier tissues provided long-lived protection against local challenge with herpes simplex virus in skin and vagina challenge models, and were clearly superior to the circulating memory T-cell cohort. The results demonstrate that peripheral TRM cells can be generated and survive in the absence of local antigen presentation and provide a powerful means of achieving immune protection against peripheral infection.


Journal of Virology | 2005

Rapid Viral Escape at an Immunodominant Simian-Human Immunodeficiency Virus Cytotoxic T-Lymphocyte Epitope Exacts a Dramatic Fitness Cost

Caroline S. Fernandez; Ivan Stratov; Robert De Rose; Katrina A. Walsh; C. Jane Dale; Miranda Z. Smith; Michael B. Agy; Shiu-Lok Hu; Kendall Krebs; David I. Watkins; David H. O'Connor; Miles P. Davenport; Stephen J. Kent

ABSTRACT Escape from specific T-cell responses contributes to the progression of human immunodeficiency virus type 1 (HIV-1) infection. T-cell escape viral variants are retained following HIV-1 transmission between major histocompatibility complex (MHC)-matched individuals. However, reversion to wild type can occur following transmission to MHC-mismatched hosts in the absence of cytotoxic T-lymphocyte (CTL) pressure, due to the reduced fitness of the escape mutant virus. We estimated both the strength of immune selection and the fitness cost of escape variants by studying the rates of T-cell escape and reversion in pigtail macaques. Near-complete replacement of wild-type with T-cell escape viral variants at an immunodominant simian immunodeficiency virus Gag epitope KP9 occurred rapidly (over 7 days) following infection of pigtail macaques with SHIVSF162P3. Another challenge virus, SHIVmn229, previously serially passaged through pigtail macaques, contained a KP9 escape mutation in 40/44 clones sequenced from the challenge stock. When six KP9-responding animals were infected with this virus, the escape mutation was maintained. By contrast, in animals not responding to KP9, rapid reversion of the K165R mutation occurred over 2 weeks after infection. The rapidity of reversion to the wild-type sequence suggests a significant fitness cost of the T-cell escape mutant. Quantifying both the selection pressure exerted by CTL and the fitness costs of escape mutation has important implications for the development of CTL-based vaccine strategies.


Journal of Immunology | 2013

Cross-Reactive Influenza-Specific Antibody-Dependent Cellular Cytotoxicity Antibodies in the Absence of Neutralizing Antibodies

Sinthujan Jegaskanda; Emma R. Job; Marit Kramski; Karen L. Laurie; Gamze Isitman; Robert De Rose; Wendy R. Winnall; Ivan Stratov; Andrew G. Brooks; Patrick C. Reading; Stephen J. Kent

A better understanding of immunity to influenza virus is needed to generate cross-protective vaccines. Engagement of Ab-dependent cellular cytotoxicity (ADCC) Abs by NK cells leads to killing of virus-infected cells and secretion of antiviral cytokines and chemokines. ADCC Abs may target more conserved influenza virus Ags compared with neutralizing Abs. There has been minimal interest in influenza-specific ADCC in recent decades. In this study, we developed novel assays to assess the specificity and function of influenza-specific ADCC Abs. We found that healthy influenza-seropositive young adults without detectable neutralizing Abs to the hemagglutinin of the 1968 H3N2 influenza strain (A/Aichi/2/1968) almost always had ADCC Abs that triggered NK cell activation and in vitro elimination of influenza-infected human blood and respiratory epithelial cells. Furthermore, we detected ADCC in the absence of neutralization to both the recent H1N1 pandemic strain (A/California/04/2009) as well as the avian H5N1 influenza hemagglutinin (A/Anhui/01/2005). We conclude that there is a remarkable degree of cross-reactivity of influenza-specific ADCC Abs in seropositive humans. Targeting cross-reactive influenza-specific ADCC epitopes by vaccination could lead to improved influenza vaccines.


ACS Nano | 2009

A Protective Vaccine Delivery System for In Vivo T Cell Stimulation Using Nanoengineered Polymer Hydrogel Capsules

Amy Sexton; Paul G. Whitney; Siow-Feng Chong; Alexander N. Zelikin; Angus P. R. Johnston; Robert De Rose; Andrew G. Brooks; Frank Caruso; Stephen J. Kent

Successful delivery of labile vaccine antigens, such as peptides and proteins, to stimulate CD4 and CD8 T cell immunity could improve vaccine strategies against chronic infections such as HIV and Hepatitis C. Layer-by-layer (LbL)-assembled nanoengineered hydrogel capsules represent a novel and promising technology for the protection and delivery of labile vaccine candidates to antigen-presenting cells (APCs). Here we report on the in vitro and in vivo immunostimulatory capabilities of LbL-assembled disulfide cross-linked poly(methacrylic acid) (PMA(SH)) hydrogel capsules as a delivery strategy for protein and peptide vaccines using robust transgenic mice models and ovalbumin (OVA) as a model vaccine. We demonstrate that OVA protein as well as multiple OVA peptides can be successfully encapsulated within nanoengineered PMA(SH) hydrogel capsules. OVA-containing PMA(SH) capsules are internalized by mouse APCs, resulting in presentation of OVA epitopes and subsequent activation of OVA-specific CD4 and CD8 T cells in vitro. OVA-specific CD4 and CD8 T cells are also activated to proliferate in vivo following intravenous vaccination of mice with OVA protein- and OVA peptide-loaded PMA(SH) hydrogel capsules. Furthermore, we show that OVA encapsulated within the PMA(SH) capsules resulted in at least 6-fold greater proliferation of OVA-specific CD8 T cells and 70-fold greater proliferation of OVA-specific CD4 T cells in vivo compared to the equivalent amount of OVA protein administered alone. These results highlight the potential of nanoengineered hydrogel capsules for vaccine delivery.


ACS Nano | 2017

Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery

Katelyn T. Gause; Adam K. Wheatley; Jiwei Cui; Yan Yan; Stephen J. Kent; Frank Caruso

Despite the immense public health successes of immunization over the past century, effective vaccines are still lacking for globally important pathogens such as human immunodeficiency virus, malaria, and tuberculosis. Exciting recent advances in immunology and biotechnology over the past few decades have facilitated a shift from empirical to rational vaccine design, opening possibilities for improved vaccines. Some of the most important advancements include (i) the purification of subunit antigens with high safety profiles, (ii) the identification of innate pattern recognition receptors (PRRs) and cognate agonists responsible for inducing immune responses, and (iii) developments in nano- and microparticle fabrication and characterization techniques. Advances in particle engineering now allow highly tunable physicochemical properties of particle-based vaccines, including composition, size, shape, surface characteristics, and degradability. Enhanced collaborative efforts between researchers in immunology and materials science are expected to rise to next-generation vaccines. This process will be significantly aided by a greater understanding of the immunological principles guiding vaccine antigenicity, immunogenicity, and efficacy. With specific emphasis on PRR-targeted adjuvants and particle physicochemical properties, this review aims to provide an overview of the current literature to guide and focus rational particle-based vaccine design efforts.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure

Amy W. Chung; Gamze Isitman; Marjon Navis; Marit Kramski; Stephen J. Kent; Ivan Stratov

Effective immunity to HIV is poorly understood. In particular, a role for antibody-dependent cellular cytotoxicity (ADCC) in controlling HIV is controversial. We hypothesized that significant pressure from HIV-specific ADCC would result in immune-escape variants. A series of ADCC epitopes in HIV-infected subjects to specific consensus strain HIV peptides were mapped using a flow cytometric assay for natural killer cell activation. We then compared the ADCC responses to the same peptide epitope derived from the concurrent HIV sequence(s) expressed in circulating virus. In 9 of 13 epitopes studied, ADCC antibodies were unable to recognize the concurrent HIV sequence. Our studies suggest ADCC responses apply significant immune pressure on the virus. This result has implications for the induction of ADCC responses by HIV vaccines.


Biomaterials | 2009

A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules.

Siow-Feng Chong; Amy Sexton; Robert De Rose; Stephen J. Kent; Alexander N. Zelikin; Frank Caruso

We report on the use of degradable polymer capsules as carriers for the delivery of oligopeptide antigens to professional antigen presenting cells (APCs). To achieve encapsulation, oligopeptide sequences were covalently linked to a negatively charged carrier polymer via biodegradable linkages and the resulting conjugate was then adsorbed onto amine-functionalized silica particles. These peptide-coated particles were then used as templates for the layer-by-layer (LbL) deposition of thiolated poly(methacrylic acid) (PMA(SH)) and poly(vinylpyrrolidone) (PVPON) multilayers. Removal of the silica core and disruption of the hydrogen bonding between PMA(SH) and PVPON by altering the solution pH yielded disulfide-stabilized PMA capsules that retain the encapsulated cargo in an oxidative environment. In the presence of a natural reducing agent, glutathione, cleavage of the disulfide bonds causes release of the peptide from the capsules. The developed strategy provides control over peptide loading into polymer capsules and yields colloidally stable micron- and submicron-sized carriers with uniform size and peptide loading. The conjugation and encapsulation procedures were proven to be non-degrading to the peptide vaccines. The peptide-loaded capsules were successfully used to deliver their cargo to APCs and activate CD8 T lymphocytes in a non-human primate model of SIV infection ex vivo. The reported approach represents a novel paradigm in the delivery of peptide vaccines and other therapeutic agents.


Journal of Virology | 2013

Antibody-Dependent Cellular Cytotoxicity Is Associated with Control of Pandemic H1N1 Influenza Virus Infection of Macaques

Sinthujan Jegaskanda; Jason T. Weinfurter; Thomas C. Friedrich; Stephen J. Kent

ABSTRACT Emerging influenza viruses pose a serious risk to global human health. Recent studies in ferrets, macaques, and humans suggest that seasonal H1N1 (sH1N1) infection provides some cross-protection against 2009 pandemic influenza viruses (H1N1pdm), but the correlates of cross-protection are poorly understood. Here we show that seasonal infection of influenza-naïve Indian rhesus macaques (Macaca mulatta) with A/Kawasaki/173/2001 (sH1N1) virus induces antibodies capable of binding the hemagglutinin (HA) of both the homologous seasonal virus and the antigenically divergent A/California/04/2009 (H1N1pdm) strain in the absence of detectable H1N1pdm-specific neutralizing antibodies. These influenza virus-specific antibodies activated macaque NK cells to express both CD107a and gamma interferon (IFN-γ) in the presence of HA proteins from either sH1N1 or H1N1pdm viruses. Although influenza virus-specific antibody-dependent cellular cytotoxicity (ADCC)-mediated NK cell activation diminished in titer over time following sH1N1 infection, these cells expanded rapidly within 7 days following H1N1pdm exposure. Furthermore, we found that influenza virus-specific ADCC was present in bronchoalveolar lavage fluid and was able to activate lung NK cells. We concluded that infection with a seasonal influenza virus can induce antibodies that mediate ADCC capable of recognizing divergent influenza virus strains. Cross-reactive ADCC may provide a mechanism for reducing the severity of divergent influenza virus infections.


Journal of Virology | 2008

Robust NK Cell-Mediated Human Immunodeficiency Virus (HIV)-Specific Antibody-Dependent Responses in HIV-Infected Subjects

Ivan Stratov; Amy W. Chung; Stephen J. Kent

ABSTRACT Antibody-dependent cellular cytotoxicity (ADCC) is a potentially effective adaptive immune response to human immunodeficiency virus (HIV) infection. The study of ADCC responses has been hampered by the lack of simple methods to quantify these responses and map effective epitopes. We serendipitously observed that standard intracellular cytokine assays on fresh whole blood from a cohort of 26 HIV-infected subjects identified non-T lymphocytes expressing gamma interferon (IFN-γ) in response to overlapping linear peptides spanning HIV-1 proteins. The effector cells were CD3− CD4− CD8− CD14− CD2+ CD56+/− NK lymphocytes and degranulated granzyme B and perforin in response to antigen stimulation. Serum transfer assays demonstrated that the specific response was mediated by immunoglobulin G. Fresh blood samples from half of the HIV-infected cohort demonstrated robust HIV peptide-specific IFN-γ expression by NK cells, predominately to Env, Pol, and Vpu HIV-1 proteins. Responses were readily mapped to define minimal epitopes utilizing this assay. Antibody-dependent, HIV-specific NK cell recognition, involving components of both innate and adaptive immune systems, represents a potentially effective immune response to induce by vaccination.


Immunological Reviews | 1999

Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity

Alistair J. Ramsay; Stephen J. Kent; Richard A. Strugnell; A Suhrbier; Scott Thomson; Ian A. Ramshaw

Summary: In this article, we describe several novel genetic vaccination strategies designed to facilitate the development of different types of immune responses. These include: the consecutive use of DNA and fowlpoxvirus vectors in “prime‐boost” strategies which induce greatly enhanced and sustained levels of both cell‐mediated immunity and humoral immunity, including mucosal responses; ii) the co‐expression of genes encoding cytokines and cell‐surface receptors, and the use of immunogenic carrier molecules, for immune modulation and/or Improved targeting of vector‐expressed vaccine antigens; acid iii) the expression of minimal immunogenic arnino acid sequences, particularly cytotoxic CD8+ T‐cell determinants, in “polytope” vector vaccines. The capacity to modulate and enhance specific immune responses by the use of approaches such as these may underpin the development of vaccines against diseases for which no effective strategies are currently available.

Collaboration


Dive into the Stephen J. Kent's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Stratov

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Miles P. Davenport

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy W. Chung

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Ramshaw

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge