Anthony Harrison
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony Harrison.
Xenobiotica | 2001
R. Webster; Gill Allan; K. Anto-Awuakye; Anthony Harrison; T. Kidd; D. Leishman; J. Phipps; D. K. Walker
1. Torsades de pointes (TDP) is a potentially fatal ventricular tachycardia associated with increases in QT interval and monophasic action potential duration (MAPD). TDP is a side-effect that has led to withdrawal of several drugs from the market (e.g. terfenadine and terodiline). 2. The potential of compounds to cause TDP was evaluated by monitoring their effects on MAPD in dog. Four compounds known to increase QT interval and cause TDP were investigated: terfenadine, terodiline, cisapride and E4031. On the basis that only free drug in the systemic circulation will elicit a pharmacological response target, free concentrations in plasma were selected to mimic the free drug exposures in man. Infusion regimens were designed that rapidly achieved and maintained target-free concentrations of these drugs in plasma and data on the relationship between free concentration and changes in MAPD were obtained for these compounds. 3. These data indicate that the free ED50 in plasma for terfenadine (1.9 nM), terodiline (76 nM), cisapride (11 nM) and E4031 (1.9 nM) closely correlate with the free concentration in man causing QT effects. For compounds that have shown TDP in the clinic (terfenadine, terodiline, cisapride) there is little differentiation between the dog ED50 and the efficacious free plasma concentrations in man (<10-fold) reflecting their limited safety margins. These data underline the need to maximize the therapeutic ratio with respect to TDP in potential development candidates and the importance of using free drug concentrations in pharmacokinetic/pharmacodynamic studies.
Journal of Medicinal Chemistry | 2015
Georg Jaeschke; Sabine Kolczewski; Will Spooren; Eric Vieira; Nadia Bitter-Stoll; Patrick Boissin; Edilio Borroni; Bernd Büttelmann; Simona M. Ceccarelli; Nicole Clemann; Beatrice David; Christoph Funk; Wolfgang Guba; Anthony Harrison; Thomas Hartung; Michael Honer; Jörg Huwyler; Martin Kuratli; Urs Niederhauser; Axel Pähler; Jens-Uwe Peters; Ann Petersen; Eric Prinssen; Antonio Ricci; Daniel Rueher; Marianne Rueher; Manfred Schneider; Paul Spurr; Theodor Stoll; Daniel Tännler
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5) have potential for the treatment of psychiatric diseases including depression, fragile X syndrome (FXS), anxiety, obsessive-compulsive disorders, and levodopa induced dyskinesia in Parkinsons disease. Herein we report the optimization of a weakly active screening hit 1 to the potent and selective compounds chloro-4-[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]pyridine (basimglurant, 2) and 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP, 3). Compound 2 is active in a broad range of anxiety tests reaching the same efficacy but at a 10- to 100-fold lower dose compared to diazepam and is characterized by favorable DMPK properties in rat and monkey as well as an excellent preclinical safety profile and is currently in phase II clinical studies for the treatment of depression and fragile X syndrome. Analogue 3 is the first reported mGlu5 NAM with a long half-life in rodents and is therefore an ideal tool compound for chronic studies in mice and rats.
Journal of Medicinal Chemistry | 2011
Paul Alan Glossop; Christine Watson; David A. Price; Mark Edward Bunnage; Donald Stuart Middleton; Anthony Wood; Kim James; Dannielle F. Roberts; Ross S. Strang; Michael Yeadon; Christelle Perros-Huguet; Nick Clarke; Michael A. Trevethick; Ian Machin; Emilio F. Stuart; Steven Evans; Anthony Harrison; David Fairman; Balaji Agoram; Jane L. Burrows; Neil Feeder; Craig K. Fulton; Barry R. Dillon; David A. Entwistle; Fiona Spence
A novel tertiary amine series of potent muscarinic M(3) receptor antagonists are described that exhibit potential as inhaled long-acting bronchodilators for the treatment of chronic obstructive pulmonary disease. Geminal dimethyl functionality present in this series of compounds confers very long dissociative half-life (slow off-rate) from the M(3) receptor that mediates very long-lasting smooth muscle relaxation in guinea pig tracheal strips. Optimization of pharmacokinetic properties was achieved by combining rapid oxidative clearance with targeted introduction of a phenolic moiety to secure rapid glucuronidation. Together, these attributes minimize systemic exposure following inhalation, mitigate potential drug-drug interactions, and reduce systemically mediated adverse events. Compound 47 (PF-3635659) is identified as a Phase II clinical candidate from this series with in vivo duration of action studies confirming its potential for once-daily use in humans.
MedChemComm | 2011
David C. Pryde; Thien-Duc Tran; Peter Jones; Gemma C. Parsons; Gerwyn Bish; Fiona M. Adam; Mya C. Smith; Donald Stuart Middleton; Nick N. Smith; Frederick Calo; Duncan Hay; Michael Paradowski; Katie J. W. Proctor; Tanya Parkinson; Carl Laxton; David Nathan Abraham Fox; Nigel Horscroft; Giuseppe Ciaramella; Hannah M. Jones; Jonathan Duckworth; Neil Benson; Anthony Harrison; Rob Webster
A series of heterocycle analogues of an adenine template were explored for TLR7 agonist potency and pharmacokinetics. One compound was identified with an excellent pharmacokinetic, in vitro potency and in vivo interferon induction profile in a mouse model, and was selected for further pre-clinical evaluation as a potential treatment for hepatitis C viral infection.
Xenobiotica | 2012
Anthony Harrison; Iain Gardner; Tanya Hay; Maurice Dickins; Kevin Beaumont; Alex Phipps; Lynn Purkins; Gill Allan; Rachelle Christian; Jonathan Duckworth; Ian Gurrell; Sarah Kempshall; Mark Savage; Mark Seymour; Marie Simpson; Louise Taylor; Paul Turnpenny
PF-184298 ((S)-2,3-dichloro-N-isobutyl-N-pyrrolidin-3-ylbenzamide) and PF-4776548 ((3-(4-fluoro-2-methoxy-benzyl)-7-hydroxy-8,9-dihydro-3H,7H-pyrrolo[2,3-c][1,7]naphthyridin-6-one)) are novel compounds which were selected to progress to human studies. Discordant human pharmacokinetic predictions arose from pre-clinical in vivo studies in rat and dog, and from human in vitro studies, resulting in a clearance prediction range of 3 to >20 mL min−1 kg−1 for PF-184298, and 5 to >20 mL min−1 kg−1 for PF-4776548. A package of work to investigate the discordance for PF-184298 is described. Although ultimately complementary to the human pharmacokinetic data in characterising the disposition of PF-184298 in humans, these data did not provide any further confidence in pharmacokinetic prediction. A fit for purpose human pharmacokinetic study was conducted for each compound, with an oral pharmacologically active dose for PF-184298, and an intravenous and oral microdose for PF-4776548. This provided a relatively low cost, clear decision making approach, resulting in the termination of PF-4776548 and further progression of PF-184298. A retrospective analysis of the data showed that, if the tools had been available at the time, the pharmacokinetics of PF-184298 in human could have been predicted from a population based simulation tool in combination with physicochemical properties and in vitro human intrinsic clearance.
Xenobiotica | 2012
Rhys M. Jones; Anthony Harrison
Prediction of pharmacokinetic (PK) profile for inhaled drugs in humans provides valuable information to aid toxicology safety assessment, evaluate the potential for systemic accumulation on multiple dosing and enable an estimate for the clinical plasma assay requirements. The accuracy in prediction of inhaled human PK profiles for seven inhaled drugs or drug candidates (salmeterol, salbutamol, formoterol, fluticasone propionate, budesonide, CP-325366 and UK-432097) was assessed using rat oratracheal solution and dry powder PK data. The prediction methodology incorporates allometric scaling and mean residence time (MRT) principles with a two compartmental PK approach. Across the range of compounds tested, the prediction of human inhaled maximum concentration (Cmax) and MRT was within 2-fold for 5 of the 7 compounds, providing an accuracy of prediction similar to the current methodologies used to predict human oral Cmax from preclinical data (). Administering as a dry powder formulation slowed the rat lung absorption rate of the least soluble compound (fluticasone propionate), impacting the prediction of Cmax and MRT. This flags the potential for preclinical studies with dry powder formulations to positively influence predictive accuracy, although further studies with low solubility inhaled drugs are required to confirm this. This study illustrates the value of preclinical assessment of PKs following administration to the lung, and provides a viable means of predicting the human PK profile for inhaled drugs.
Bioorganic & Medicinal Chemistry Letters | 2011
David James Rawson; Delphine Brugier; Anthony Harrison; Jo Hough; Julie Newman; Joe Otterburn; Graham Nigel Maw; Jenny Price; Lisa R. Thompson; Paul Turnpenny; Andrew N. Warren
A potent series of substituted (2S,4S)-benzylproline α(2)δ ligands have been designed from the readily available starting material (2S,4R)-hydroxy-L-proline. The ligands have improved pharmacokinetic profile over the (4S)-phenoxyproline derivatives described previously and have potential for development as oral agents for the treatment of neuropathic pain. Compound 16 has been progressed to clinical development.
Bioorganic & Medicinal Chemistry Letters | 2009
Florian Wakenhut; Gill Allan; Paul V. Fish; M. Jonathan Fray; Anthony Harrison; Rachel McCoy; Stephen Charles Phillips; Alan Stobie; Dominique Westbrook; Simon Lempriere Westbrook; Gavin A. Whitlock
The structure-activity relationship and the synthesis of novel N-[(3S)-pyrrolidin-3-yl]benzamides as dual serotonin and noradrenaline monoamine reuptake inhibitors (SNRI) is described. Preferred compound 9 aka PF-184,298 is a potent SNRI with good selectivity over dopamine reuptake inhibition (DRI), good in vitro metabolic stability, weak CYP inhibition and drug-like physicochemical properties consistent with CNS target space. Evaluation in an in vivo preclinical model of stress urinary incontinence showed 9 significantly increased urethral tone at free plasma concentrations consistent with its in vitro primary pharmacology.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2012
Sarah N. Campion; Christopher J. Bowman; Gregg D. Cappon; Anthony Harrison; Gregory L. Finch; Mark E. Hurtt
BACKGROUND Lersivirine is a second-generation nonnucleoside reverse transcriptase inhibitor undergoing clinical development for the treatment of human immunodeficiency virus-1. An embryo-fetal development study was performed to evaluate the potential for maternal and developmental toxicity of lersivirine. METHODS Pregnant New Zealand White rabbits were administered 0, 100, 250, and 500 mg/kg lersivirine by oral gavage once daily on gestation days (GDs) 7 to 19, followed by cesarean section on GD 29 and fetal evaluation. RESULTS Maternal toxicity was noted at all dose levels (decreased food consumption and body weight gain), with fetal toxicity at 500 mg/kg (decreased fetal weights, increased postimplantation loss). Equivocal findings for axial skeletal malformations were observed in three fetuses at 500 mg/kg. To better understand if these malformations were related to treatment with lersivirine, a follow-up rabbit embryo-fetal development study was performed with 1000 mg/kg/day lersivirine (500 mg/kg BID, 12-hr interdose interval) for two different 3-day windows, GDs 8 to 10 or GDs 11 to 13, which represent the sensitive windows of axial skeletal development in rabbits. Control rabbits were administered vehicle following the same dosing regimen from GDs 8 to 13. Cesarean sections were performed on GD 29, and fetal skeletons were examined for the potential of lersivirine to cause skeletal malformations in rabbits. At maternal exposure levels higher than the initial study, lersivirine did not induce fetal skeletal malformations when administered in the sensitive windows of axial skeletal development. CONCLUSION The results of these studies indicate that lersivirine did not exhibit any evidence of teratogenicity in rabbits.
Bioorganic & Medicinal Chemistry Letters | 2011
Patrick Stephen Johnson; Thomas Ryckmans; Justin Stephen Bryans; Dave M. Beal; Kevin Neil Dack; Neil Feeder; Anthony Harrison; Mark L. Lewis; Helen J. Mason; James E. J. Mills; Julie Newman; Christelle Pasquinet; Dave J. Rawson; Lee R. Roberts; Rachel Jane Russell; Deborah Spark; Alan Stobie; Toby J. Underwood; Simon Wheeler
The V1a receptor has emerged as an attractive target for a range of indications including Raynauds disease and dysmenorrhoea. As part of an effort to discover a new class of orally active V1a antagonist, we optimised a highly lipophilic, metabolically unstable lead into a range of potent, selective and metabolically stable V1a antagonists. In this communication, we demonstrate the series-dependent effect of limiting the number of rotatable bonds in order to decrease Cytochrome P450-mediated metabolism. This effort culminated in the discovery of PF-184563, a novel, selective V1a antagonist with excellent in vitro and in vivo properties.