Anthony J. Olejniczak
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony J. Olejniczak.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Tanya M. Smith; Paul Tafforeau; Donald J. Reid; Joane Pouech; Vincent Lazzari; John P. Zermeno; Debbie Guatelli-Steinberg; Anthony J. Olejniczak; Almut Hoffman; Jakov Radovčić; Masrour Makaremi; Michel Toussaint; Chris Stringer; Jean-Jacques Hublin
Humans have an unusual life history, with an early weaning age, long childhood, late first reproduction, short interbirth intervals, and long lifespan. In contrast, great apes wean later, reproduce earlier, and have longer intervals between births. Despite 80 y of speculation, the origins of these developmental patterns in Homo sapiens remain unknown. Because they record daily growth during formation, teeth provide important insights, revealing that australopithecines and early Homo had more rapid ontogenies than recent humans. Dental development in later Homo species has been intensely debated, most notably the issue of whether Neanderthals and H. sapiens differ. Here we apply synchrotron virtual histology to a geographically and temporally diverse sample of Middle Paleolithic juveniles, including Neanderthals, to assess tooth formation and calculate age at death from dental microstructure. We find that most Neanderthal tooth crowns grew more rapidly than modern human teeth, resulting in significantly faster dental maturation. In contrast, Middle Paleolithic H. sapiens juveniles show greater similarity to recent humans. These findings are consistent with recent cranial and molecular evidence for subtle developmental differences between Neanderthals and H. sapiens. When compared with earlier hominin taxa, both Neanderthals and H. sapiens have extended the duration of dental development. This period of dental immaturity is particularly prolonged in modern humans.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Tanya M. Smith; Michel Toussaint; Donald J. Reid; Anthony J. Olejniczak; Jean-Jacques Hublin
The evolution of life history (pace of growth and reproduction) was crucial to ancient hominin adaptations. The study of dental development facilitates assessment of growth and development in fossil hominins with greater precision than other skeletal analyses. During tooth formation, biological rhythms manifest in enamel and dentine, creating a permanent record of growth rate and duration. Quantification of these internal and external incremental features yields developmental benchmarks, including ages at crown completion, tooth eruption, and root completion. Molar eruption is correlated with other aspects of life history. Recent evidence for developmental differences between modern humans and Neanderthals remains ambiguous. By measuring tooth formation in the entire dentition of a juvenile Neanderthal from Scladina, Belgium, we show that most teeth formed over a shorter time than in modern humans and that dental initiation and eruption were relatively advanced. By registering manifestations of stress across the dentition, we are able to present a precise chronology of Neanderthal dental development that differs from modern humans. At 8 years of age at death, this juvenile displays a degree of development comparable with modern human children who are several years older. We suggest that age at death in juvenile Neanderthals should not be assessed by comparison with modern human standards, particularly those derived from populations of European origin. Moreover, evidence from the Scladina juvenile and other similarly aged hominins suggests that a prolonged childhood and slow life history are unique to Homo sapiens.
Journal of Human Evolution | 2008
Anthony J. Olejniczak; Tanya M. Smith; Robin N. M. Feeney; Roberto Macchiarelli; Arnaud Mazurier; Luca Bondioli; Antonio Rosas; Javier Fortea; Marco de la Rasilla; Antonio García-Tabernero; Jakov Radovčić; Matthew M. Skinner; Michel Toussaint; Jean-Jacques Hublin
The thickness of dental enamel is often discussed in paleoanthropological literature, particularly with regard to differences in growth, health, and diet between Neandertals and modern humans. Paleoanthropologists employ enamel thickness in paleodietary and taxonomic studies regarding earlier hominins, but variation in enamel thickness within the genus Homo has not been thoroughly explored despite its potential to discriminate species and its relevance to studies of growth and development. Radiographic two-dimensional studies indicate that Neandertal molar enamel is thin relative to the thick enamel of modern humans, although such methods have limited accuracy. Here we show that, measured via accurate high-resolution microtomographic imaging, Neandertal molar enamel is absolutely and relatively thinner than modern human enamel at most molar positions. However, this difference relates to the ratio of coronal dentine volume to total crown volume, rather than the quantity of enamel per se. The absolute volume of Neandertal molar enamel is similar to that of modern humans, but Neandertal enamel is deposited over a larger volume of coronal dentine, resulting in lower average (and relative) enamel thickness values. Sample sizes do not permit rigorous intragroup comparisons, but Neandertal molar tissue proportions evince less variation than the modern human sample. Differences in three- and two-dimensional enamel thickness data describing Neandertal molars may be explained by dimensional reduction. Although molar tissue proportions distinguish Neanderthals from recent Homo sapiens, additional study is necessary to assess trends in tissue proportions in the genus Homo throughout the Pleistocene.
Biology Letters | 2008
Anthony J. Olejniczak; Tanya M. Smith; Matthew M. Skinner; Frederick E. Grine; Robin N. M. Feeney; John Francis Thackeray; Jean-Jacques Hublin
Thick molar enamel is among the few diagnostic characters of hominins which are measurable in fossil specimens. Despite a long history of study and characterization of Paranthropus molars as relatively ‘hyper-thick’, only a few tooth fragments and controlled planes of section (designed to be proxies of whole-crown thickness) have been measured. Here, we measure molar enamel thickness in Australopithecus africanus and Paranthropus robustus using accurate microtomographic methods, recording the whole-crown distribution of enamel. Both taxa have relatively thick enamel, but are thinner than previously characterized based on two-dimensional measurements. Three-dimensional measurements show that P. robustus enamel is not hyper-thick, and A. africanus enamel is relatively thinner than that of recent humans. Interspecific differences in the whole-crown distribution of enamel thickness influence cross-sectional measurements such that enamel thickness is exaggerated in two-dimensional sections of A. africanus and P. robustus molars. As such, two-dimensional enamel thickness measurements in australopiths are not reliable proxies for the three-dimensional data they are meant to represent. The three-dimensional distribution of enamel thickness shows different patterns among species, and is more useful for the interpretation of functional adaptations than single summary measures of enamel thickness.
American Journal of Physical Anthropology | 2010
Matthew M. Skinner; Alastair Evans; Tanya M. Smith; Jukka Jernvall; Paul Tafforeau; Kornelius Kupczik; Anthony J. Olejniczak; Antonio Rosas; Jakov Radovčić; J. Francis Thackeray; Michel Toussaint; Jean-Jacques Hublin
Molar crown morphology varies among primates from relatively simple in some taxa to more complex in others, with such variability having both functional and taxonomic significance. In addition to the primary cusps, crown surface complexity derives from the presence of crests, cuspules, and crenulations. Developmentally, this complexity results from the deposition of an enamel cap over a basement membrane (the morphology of which is preserved as the enamel-dentine junction, or EDJ, in fully formed teeth). However, the relative contribution of the enamel cap and the EDJ to molar crown complexity is poorly characterized. In this study we examine the complexity of the EDJ and enamel surface of a broad sample of primate (including fossil hominin) lower molars through the application of micro-computed tomography and dental topographic analysis. Surface complexity of the EDJ and outer enamel surface (OES) is quantified by first mapping, and then summing, the total number of discrete surface orientation patches. We investigate the relative contribution of the EDJ and enamel cap to crown complexity by assessing the correlation in patch counts between the EDJ and OES within taxa and within individual teeth. We identify three patterns of EDJ/OES complexity which demonstrate that both crown patterning early in development and the subsequent deposition of the enamel cap contribute to overall crown complexity in primates.
American Journal of Physical Anthropology | 2009
Tanya M. Smith; Katerina Harvati; Anthony J. Olejniczak; Donald J. Reid; Jean-Jacques Hublin; Eleni Panagopoulou
Developmental and structural affinities between modern human and Neanderthal dental remains continue to be a subject of debate as well as their utility for informing assessments of life history and taxonomy. Excavation of the Middle Paleolithic cave site Lakonis in southern Greece has yielded a lower third molar (LKH 1). Here, we detail the crown development and enamel thickness of the distal cusps of the LKH 1 specimen, which has been classified as a Neanderthal based on the presence of an anterior fovea and mid-trigonid crest. Crown formation was determined using standard histological techniques, and enamel thickness was measured from a virtual plane of section. Developmental differences include thinner cuspal enamel and a lower periodicity than modern humans. Crown formation in the LKH 1 hypoconid is estimated to be 2.6-2.7 years, which is shorter than modern human times. The LKH 1 hypoconid also shows a more rapid overall crown extension rate than modern humans. Relative enamel thickness was approximately half that of a modern human sample mean; enamel on the distal cusps of modern human third molars is extremely thick in absolute and relative terms. These findings are consistent with recent studies that demonstrate differences in crown development, tissue proportions, and enamel thickness between Neanderthals and modern humans. Although overlap in some developmental variables may be found, the results of this and other studies suggest that Neanderthal molars formed in shorter periods of time than modern humans, due in part to thinner enamel and faster crown extension rates.
American Journal of Physical Anthropology | 2008
Tanya M. Smith; Anthony J. Olejniczak; Stefan Reh; Donald J. Reid; Jean-Jacques Hublin
In addition to evidence for bipedality in some fossil taxa, molar enamel thickness is among the few characters distinguishing (thick-enameled) hominins from the (thin-enameled) African apes. Despite the importance of enamel thickness in taxonomic discussions and a long history of scholarship, measurements of enamel thickness are performed almost exclusively on molars, with relatively few studies examining premolars and anterior teeth. This focus on molars has limited the scope of enamel thickness studies (i.e., there exist many fossil hominin incisors, canines, and premolars). Increasing the available sample of teeth from which to compare enamel thickness measurements from the fossil record could substantially increase our understanding of this aspect of dental biology, and perhaps facilitate greater taxonomic resolution of early hominin fossils. In this study, we report absolute and relative (size-scaled) enamel thickness measurements for the complete dentition of modern humans and chimpanzees. In accord with previous studies of molars, chimpanzees show lower relative enamel thickness at each tooth position, with little overlap between the two taxa. A significant trend of increasing enamel thickness from anterior to posterior teeth is apparent in both humans and chimpanzees, indicating that inter-taxon comparisons should be limited to the same tooth position in order to compare homologous structures. As nondestructive imaging techniques become commonplace (facilitating the examination of increasing numbers of fossil specimens), studies may maximize available samples by expanding beyond molars.
In: Bailey, SE and Hublin, JJ, (eds.) Dental Perspectives on Human Evolution, Max Planck Institute, Leipzig. (pp. 175-190). Springer: New York. (2007) | 2007
Tanya M. Smith; Donald J. Reid; Mc Dean; Anthony J. Olejniczak; R.J. Ferrell; Lawrence B. Martin
Previous histological studies of small samples of chimpanzee and human molars suggested similarities in crown formation time, which is surprising given substantial life history differences. As part of an on-going study of hominoid molar development, we report on the largest-known sample of chimpanzee and human molars, including re-evaluation of previously examined histological sections. Variation of incremental features within and between genera is examined, including Retzius line periodicity, daily secretion rate, and Retzius line number. Differences due to population-level variation and sexual dimorphism are also considered. Significant increasing trends in daily secretion rates were found from inner to outer cuspal enamel, ranging from approximately 3–5 microns/day in chimpanzees. Humans demonstrate slightly lower and higher mean values at the beginning and end of cuspal formation, respectively, but both genera show an overall average of approximately 4 microns/day. Retzius line periodicity ranges from 6–7 days within chimpanzees and 6–12 days within humans. Within upper molars, mesiopalatal cusps (protocones) show thicker cuspal enamel and longer crown formation time than mesiobuccal cusps (paracones). Within lower molars, mesiobuccal cusps (protoconids) show greater Retzius line numbers, longer imbricational formation time, and thicker cuspal enamel than mesiolingual cusps (metaconids), resulting in longer formation times. A negative correlation was found between Retzius line number and periodicity in the human sample, resulting in similar crown formation times within cusp types, despite the range of individual periodicities. Few sex differences were found, but a number of developmental differences were apparent among human populations. Cusp-specific formation time in chimpanzees ranges from 2–3 years on average. Within specific cusp types, humans show greater average formation times than chimpanzees, due to higher mean periodicity values and/or thicker cuspal enamel. However, formation time within specific cusp types varies considerably, and the two genera show overlapping ranges, which has implications for the interpretation of small samples.
Annals of Anatomy-anatomischer Anzeiger | 2004
Anthony J. Olejniczak; Lawrence B. Martin; Lilian Ulhaas
The external shape and thickness of the enamel component of primate molars have been employed extensively in phylogenetic studies of primate relationships. The dentine component of the molar crown also has been suggested to be indicative of phylogenetic relationships, but few studies have quantified dentine morphology in order to evaluate this possibility. To explore the utility of dentine shape as an indicator of phylogenetic affinity, a two-dimensional geometric morphometric analysis (EDMA-II) was performed using nine homologous landmarks on a sample of sectioned maxillary molars of extant ceboid, cercopithecoid, and hominoid primates. Results indicate that dentine shape (the configuration of the enamel-dentine junction, or EDJ) can distinguish taxa at every taxonomic level examined, including superfamilies, subfamilies, and closely related genera and species. This supports the idea that dentine morphology may be useful for phylogenetic studies. It is further suggested that the morphology of the EDJ may be more conservative than enamel morphology, and perhaps better-suited to phylogenetic studies. Among the samples studied, cercopithecoid primates have a unique dentine shape, and it is suggested that the development of bilophodont molars may be related to the distinctive EDJ configuration in cercopithecoids.
Evolution | 2011
Aida Gómez-Robles; Anthony J. Olejniczak; María Martinón-Torres; Leyre Prado-Simón; José María Bermúdez de Castro
Geometric morphometric techniques may offer a promising methodological approach to analyze evolutionary novelties in a quantitative framework. Nevertheless, and despite continuous improvements to this methodology, the inclusion of novel features in these studies presents some difficulties. In the present study, different methods to explicitly include novel traits in geometric morphometric analyses are compared, including homology‐free approaches, landmark‐based approaches, and combinations of both techniques. The two‐dimensional occlusal morphology of the lower second molar in multiple hominin species was chosen to evaluate these methods, as an example of an anatomical structure including one novelty: a distal fifth cusp is present in earlier hominins, and notably absent in many later Homo species. Results reveal that different approaches provide different results, highlighting that the design of the conformations of landmarks has a high impact on the inferred conclusions. Among diverse methods, a combined approach including landmarks, sliding semilandmarks, and only one landmark related to the studied novelty (an indicator of its absence or presence and of its size, when present), was able to directly discern structures with and without the novel feature, circumventing some of the methodological difficulties associated with these traits. This study demonstrates the ability of geometric morphometric techniques to investigate evolutionary novelties and explores the implications of different methods, providing a reference context for future studies.