Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Kim is active.

Publication


Featured researches published by Anthony Kim.


Journal of Neurosurgery | 2011

Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker.

Pablo A. Valdés; Frederic Leblond; Anthony Kim; Brent T. Harris; Brian C. Wilson; Xiaoyao Fan; Tor D. Tosteson; Alex Hartov; Songbai Ji; Kadir Erkmen; Nathan E. Simmons; Keith D. Paulsen; David W. Roberts

OBJECT Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative fluorescence of protoporphyrin IX (PpIX), synthesized endogenously following δ-aminolevulinic acid (ALA) administration, has been used for this purpose in high-grade glioma (HGG). The authors show that diagnostically significant but visually imperceptible concentrations of PpIX can be quantitatively measured in vivo and used to discriminate normal from neoplastic brain tissue across a range of tumor histologies. METHODS The authors studied 14 patients with diagnoses of low-grade glioma (LGG), HGG, meningioma, and metastasis under an institutional review board-approved protocol for fluorescence-guided resection. The primary aim of the study was to compare the diagnostic capabilities of a highly sensitive, spectrally resolved quantitative fluorescence approach to conventional fluorescence imaging for detection of neoplastic tissue in vivo. RESULTS A significant difference in the quantitative measurements of PpIX concentration occurred in all tumor groups compared with normal brain tissue. Receiver operating characteristic (ROC) curve analysis of PpIX concentration as a diagnostic variable for detection of neoplastic tissue yielded a classification efficiency of 87% (AUC = 0.95, specificity = 92%, sensitivity = 84%) compared with 66% (AUC = 0.73, specificity = 100%, sensitivity = 47%) for conventional fluorescence imaging (p < 0.0001). More than 81% (57 of 70) of the quantitative fluorescence measurements that were below the threshold of the surgeons visual perception were classified correctly in an analysis of all tumors. CONCLUSIONS These findings are clinically profound because they demonstrate that ALA-induced PpIX is a targeting biomarker for a variety of intracranial tumors beyond HGGs. This study is the first to measure quantitative ALA-induced PpIX concentrations in vivo, and the results have broad implications for guidance during resection of intracranial tumors.


Journal of Biomedical Optics | 2010

Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements

Anthony Kim; Mamta Khurana; Yumi Moriyama; Brian C. Wilson

We present a method for tissue fluorescence quantification in situ using a handheld fiber optic probe that measures both the fluorescence and diffuse reflectance spectra. A simplified method to decouple the fluorescence spectrum from distorting effects of the tissue optical absorption and scattering is developed, with the objective of accurately quantifying the fluorescence in absolute units. The primary motivation is measurement of 5-aminolevulinic acid-induced protoporphyrin IX (ALA-PpIX) concentration in tissue during fluorescence-guided resection of malignant brain tumors. This technique is validated in phantoms and ex vivo mouse tissues, and tested in vivo in a rabbit brain tumor model using ALA-PpIX fluorescence contrast.


Neuro-oncology | 2011

δ-aminolevulinic acid–induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy

Pablo A. Valdés; Anthony Kim; Marco Brantsch; Carolyn Niu; Ziev B. Moses; Tor D. Tosteson; Brian C. Wilson; Keith D. Paulsen; David W. Roberts; Brent T. Harris

Extent of resection is a major goal and prognostic factor in the treatment of gliomas. In this study we evaluate whether quantitative ex vivo tissue measurements of δ-aminolevulinic acid-induced protoporphyrin IX (PpIX) identify regions of increasing malignancy in low- and high-grade gliomas beyond the capabilities of current fluorescence imaging in patients undergoing fluorescence-guided resection (FGR). Surgical specimens were collected from 133 biopsies in 23 patients and processed for ex vivo neuropathological analysis: PpIX fluorimetry to measure PpIX concentrations (C(PpIX)) and Ki-67 immunohistochemistry to assess tissue proliferation. Samples displaying visible levels of fluorescence showed significantly higher levels of C(PpIX) and tissue proliferation. C(PpIX) was strongly correlated with histopathological score (nonparametric) and tissue proliferation (parametric), such that increasing levels of C(PpIX) were identified with regions of increasing malignancy. Furthermore, a large percentage of tumor-positive biopsy sites (∼40%) that were not visibly fluorescent under the operating microscope had levels of C(PpIX) greater than 0.1 µg/mL, which indicates that significant PpIX accumulation exists below the detection threshold of current fluorescence imaging. Although PpIX fluorescence is recognized as a visual biomarker for neurosurgical resection guidance, these data show that it is quantitatively related at the microscopic level to increasing malignancy in both low- and high-grade gliomas. This work suggests a need for improved PpIX fluorescence detection technologies to achieve better sensitivity and quantification of PpIX in tissue during surgery.


Journal of Biomedical Optics | 2011

Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery

Pablo A. Valdés; Anthony Kim; Frederic Leblond; Olga M. Conde; Brent T. Harris; Keith D. Paulsen; Brian C. Wilson; David W. Roberts

Biomarkers are indicators of biological processes and hold promise for the diagnosis and treatment of disease. Gliomas represent a heterogeneous group of brain tumors with marked intra- and inter-tumor variability. The extent of surgical resection is a significant factor influencing post-surgical recurrence and prognosis. Here, we used fluorescence and reflectance spectral signatures for in vivo quantification of multiple biomarkers during glioma surgery, with fluorescence contrast provided by exogenously-induced protoporphyrin IX (PpIX) following administration of 5-aminolevulinic acid. We performed light-transport modeling to quantify multiple biomarkers indicative of tumor biological processes, including the local concentration of PpIX and associated photoproducts, total hemoglobin concentration, oxygen saturation, and optical scattering parameters. We developed a diagnostic algorithm for intra-operative tissue delineation that accounts for the combined tumor-specific predictive capabilities of these quantitative biomarkers. Tumor tissue delineation achieved accuracies of up to 94% (specificity = 94%, sensitivity = 94%) across a range of glioma histologies beyond current state-of-the-art optical approaches, including state-of-the-art fluorescence image guidance. This multiple biomarker strategy opens the door to optical methods for surgical guidance that use quantification of well-established neoplastic processes. Future work would seek to validate the predictive power of this proof-of-concept study in a separate larger cohort of patients.


Neurosurgical Focus | 2011

Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

Kimon Bekelis; Pablo A. Valdés; Kadir Erkmen; Frederic Leblond; Anthony Kim; Brian C. Wilson; Brent T. Harris; Keith D. Paulsen; David W. Roberts

OBJECT Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. METHODS A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board-approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. RESULTS The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological analysis. CONCLUSIONS Fluorescence-guided resection may be a useful adjunct in the resection of skull base meningiomas. The use of a quantitative intraoperative probe to detect PpIX concentration allows more accurate determination of neoplastic tissue in meningiomas than visible fluorescence and is readily applicable in areas, such as the skull base, where complete resection is critical but difficult because of the vital structures surrounding the pathology.


Neurosurgery | 2014

5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence in Meningioma: Qualitative and Quantitative Measurements In Vivo

Pablo A. Valdés; Kimon Bekelis; Brent T. Harris; Brian C. Wilson; Frederic Leblond; Anthony Kim; Nathan E. Simmons; Kadir Erkmen; Keith D. Paulsen; David W. Roberts

BACKGROUND: The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE: To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS: ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intraoperative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS: Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (cPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher cPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION: ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature. ABBREVIATIONS: ALA, 5-aminolevulinic acid AUC, area under the curve FGR, fluorescence-guided resection NPV, negative predictive value PpIX, protoporphyrin IX PPV, positive predictive value ROC, receiver operating characteristic WHO, World Health Organization


Journal of Biomedical Optics | 2012

Quantitative correlation between light depolarization and transport albedo of various porcine tissues.

Sanaz Alali; Manzoor Ahmad; Anthony Kim; Nasit Vurgun; Michael F. G. Wood; I. Alex Vitkin

We present a quantitative study of depolarization in biological tissues and correlate it with measured optical properties (reduced scattering and absorption coefficients). Polarized light imaging was used to examine optically thick samples of both isotropic (liver, kidney cortex, and brain) and anisotropic (cardiac muscle, loin muscle, and tendon) pig tissues in transmission and reflection geometries. Depolarization (total, linear, and circular), as derived from polar decomposition of the measured tissue Mueller matrix, was shown to be related to the measured optical properties. We observed that depolarization increases with the transport albedo for isotropic and anisotropic tissues, independent of measurement geometry. For anisotropic tissues, depolarization was higher compared to isotropic tissues of similar transport albedo, indicating birefringence-caused depolarization effects. For tissues with large transport albedos (greater than ~0.97), backscattering geometry was preferred over transmission due to its greater retention of light polarization; this was not the case for tissues with lower transport albedo. Preferential preservation of linearly polarized light over circularly polarized light was seen in all tissue types and all measurement geometries, implying the dominance of Rayleigh-like scattering. The tabulated polarization properties of different tissue types and their links to bulk optical properties should prove useful in future polarimetric tissue characterization and imaging studies.


Optics Letters | 2012

A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery

Pablo A. Valdés; Frederic Leblond; Anthony Kim; Brian C. Wilson; Keith D. Paulsen; David W. Roberts

We report a dual-band normalization technique for in vivo quantification of the metabolic biomarker, protoporphyrin IX (PpIX), during brain tumor resection procedures. The accuracy of the approach was optimized in tissue simulating phantoms with varying absorption and scattering properties, validated with fluorimetric assessments on ex vivo brain tissue, and tested on human data acquired in vivo during fluorescence-guided surgery of brain tumors. The results demonstrate that the dual-band normalization technique allows PpIX concentrations to be accurately quantified by correction with reflectance data recorded and integrated within only two narrow wavelength intervals. The simplicity of the method lends itself to the enticing prospect that the method could be applicable to wide-field applications in quantitative fluorescence imaging and dosimetry in photodynamic therapy.


Journal of Neuropathology and Experimental Neurology | 2012

Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown.

Pablo A. Valdés; Ziev B. Moses; Anthony Kim; Clifford J. Belden; Brian C. Wilson; Keith D. Paulsen; David W. Roberts; Brent T. Harris

Abstract In recent years, 5-aminolevulinic acid (ALA)–induced protoporphyrin IX (PpIX) fluorescence guidance has been used as a surgical adjunct to improve the extent of resection of gliomas. Exogenous administration of ALA before surgery leads to the accumulation of red fluorescent PpIX in tumor tissue that the surgeon can visualize and thereby discriminate between normal and tumor tissue. Selective accumulation of PpIX has been linked to numerous factors, of which blood-brain barrier breakdown has been suggested to be a key factor. To test the hypothesis that PpIX concentration positively correlates with gadolinium (Gd) concentrations, we performed ex vivo measurements of PpIX and of Gd using inductively coupled plasma mass spectrometry, the latter as a quantitative biomarker of blood-brain barrier breakdown; this was corroborated with immunohistochemistry of microvascular density in surgical biopsies of patients undergoing fluorescence-guided surgery for glioma. We found positive correlations between PpIX concentration and Gd concentration (r = 0.58, p < 0.0001) and between PpIX concentration and microvascular density (r = 0.55, p < 0.0001), suggesting a significant, yet limited, association between blood-brain barrier breakdown and ALA-induced PpIX fluorescence. To our knowledge, this is the first time that Gd measurements by inductively coupled plasma mass spectrometry have been used in human gliomas.


Archive | 2010

Measurement of Ex Vivo and In Vivo Tissue Optical Properties: Methods and Theories

Anthony Kim; Brian C. Wilson

In this chapter, the various experimental techniques that have been developed to measure the optical scattering and absorption properties of tissues are discussed, together with the theory underlying these methods.

Collaboration


Dive into the Anthony Kim's collaboration.

Top Co-Authors

Avatar

Brian C. Wilson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Arjun Sahgal

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Keller

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

Frederic Leblond

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Brian Keller

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Brent T. Harris

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge