Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony L. Cook is active.

Publication


Featured researches published by Anthony L. Cook.


PLOS ONE | 2010

Characterization of the Melanoma miRNAome by Deep Sequencing.

Mitchell S. Stark; Sonika Tyagi; Derek J. Nancarrow; Glen M. Boyle; Anthony L. Cook; David C. Whiteman; Peter G. Parsons; Christopher W. Schmidt; Richard A. Sturm; Nicholas K. Hayward

Background MicroRNAs (miRNAs) are 18–23 nucleotide non-coding RNAs that regulate gene expression in a sequence specific manner. Little is known about the repertoire and function of miRNAs in melanoma or the melanocytic lineage. We therefore undertook a comprehensive analysis of the miRNAome in a diverse range of pigment cells including: melanoblasts, melanocytes, congenital nevocytes, acral, mucosal, cutaneous and uveal melanoma cells. Methodology/Principal Findings We sequenced 12 small RNA libraries using Illuminas Genome Analyzer II platform. This massively parallel sequencing approach of a diverse set of melanoma and pigment cell libraries revealed a total of 539 known mature and mature-star sequences, along with the prediction of 279 novel miRNA candidates, of which 109 were common to 2 or more libraries and 3 were present in all libraries. Conclusions/Significance Some of the novel candidate miRNAs may be specific to the melanocytic lineage and as such could be used as biomarkers to assist in the early detection of distant metastases by measuring the circulating levels in blood. Follow up studies of the functional roles of these pigment cell miRNAs and the identification of the targets should shed further light on the development and progression of melanoma.


Disease Models & Mechanisms | 2010

Disease-specific, neurosphere-derived cells as models for brain disorders

Nicholas Matigian; Greger Abrahamsen; Ratneswary Sutharsan; Anthony L. Cook; Alejandra Mariel Vitale; Amanda Nouwens; Bernadette Bellette; Jiyuan An; Matthew J. Anderson; Anthony Gordon Beckhouse; Maikel Bennebroek; Rowena Cecil; Alistair Morgan Chalk; Julie Cochrane; Yongjun Fan; François Féron; Richard D. McCurdy; John J. McGrath; Wayne Murrell; Chris Perry; Jyothy Raju; Sugandha Ravishankar; Peter A. Silburn; Greg T. Sutherland; Stephen M. Mahler; George D. Mellick; Stephen A. Wood; Carolyn M. Sue; Christine A. Wells; Alan Mackay-Sim

SUMMARY There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson’s disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson’s disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery.


Pigment Cell & Melanoma Research | 2011

Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor

Glen M. Boyle; Susan L. Woods; Vanessa F. Bonazzi; Mitchell S. Stark; Elke Hacker; Lauren G. Aoude; Ken Dutton-Regester; Anthony L. Cook; Richard A. Sturm; Nicholas K. Hayward

To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR‐211. We focused on this pigment‐cell‐enriched miRNA as it is derived from the microphthalmia‐associated transcription factor (MITF)‐regulated gene, TRPM1 (melastatin). We find that miR‐211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR‐211, including POU3F2 (BRN2). Inhibition of miR‐211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR‐211 represses BRN2 in differentiated cells. Over‐expression of miR‐211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non‐overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR‐211 expression.


International Journal of Cancer | 2002

Proneural and proneuroendocrine transcription factor expression in cutaneous mechanoreceptor (Merkel) cells and Merkel cell carcinoma

J. Helen Leonard; Anthony L. Cook; Mireille Van Gele; Glen M. Boyle; Kelly J. Inglis; Frank Speleman; Richard A. Sturm

Merkel cells form part of the peripheral neuroendocrine system of the skin and act as mechanoreceptors in touch response. Merkel cell carcinoma (MCC) is a rare, aggressive disease with similarities to small cell lung cancer (SCLC), which is also of neuroendocrine origin. We previously identified a novel DNA binding protein complex specific for MCC suspension cell lines, termed Merkel nuclear factor (MNF) by its binding to the POU‐IV family DNA binding consensus sequence. Here we report that MNF contains the POU‐IV family member Brn‐3c and that Brn‐3c is expressed in normal Merkel cells. Additionally, Brn‐3c protein reactivity is restricted to a subset of MCC biopsies and is not seen in biopsies revealing adherent, variant cell lines lacking neuroendocrine markers. Recently, proper development of murine Merkel cells was shown to require the proneural basic helix‐loop‐helix transcription factor, atonal family member, MATH1. We demonstrate a correlation between Brn‐3c and HATH1 reactivity in MCC biopsies and cell lines with retention of neuroendocrine phenotype. In SCLC, the related basic helix‐loop‐helix transcription factor HASH1 is responsible for neuroendocrine phenotype, but HASH1 transcripts were not detected in MCC cell lines. We propose that HATH1 and Brn‐3c may form a transcriptional hierarchy responsible for determining neuroendocrine phenotype in Merkel cells and that lack of Brn‐3c and/or HATH1 in MCC may indicate a more aggressive disease requiring closer patient follow‐up.


Human Mutation | 2008

Red hair is the null phenotype of MC1R

Kimberley A. Beaumont; Sri N. Shekar; Anthony L. Cook; David L. Duffy; Richard A. Sturm

The Melanocortin‐1 Receptor (MC1R) is a G‐protein coupled receptor, which is responsible for production of the darker eumelanin pigment and the tanning response. The MC1R gene has many polymorphisms, some of which have been linked to variation in pigmentation phenotypes within human populations. In particular, the p.D84E, p.R151C, p.R160W and p.D294 H alleles have been strongly associated with red hair, fair skin and increased skin cancer risk. These red hair colour (RHC) variants are relatively well described and are thought to result in altered receptor function, while still retaining varying levels of signaling ability in vitro. The mouse Mc1r null phenotype is yellow fur colour, the p.R151C, p.R160W and p.D294 H alleles were able to partially rescue this phenotype, leading to the question of what the true null phenotype of MC1R would be in humans. Due to the rarity of MC1R null alleles in human populations, they have only been found in the heterozygous state until now. We report here the first case of a homozygous MC1R null individual, phenotypic analysis indicates that red hair and fair skin is found in the absence of MC1R function.


International Journal of Cancer | 2001

Frequent allelic loss at 10q23 but low incidence of PTEN mutations in merkel cell carcinoma

Mireille Van Gele; J. Helen Leonard; Nadine Van Roy; Anthony L. Cook; Anne De Paepe; Franki Speleman

Merkel cell carcinoma (MCC) is a rare, highly metastatic skin tumor of neuroectodermal origin. The disease shares clinical and histopathological features with small cell lung carcinoma (SCLC). The genetic mechanisms underlying the development and tumor progression of MCC are poorly understood. We recently showed by comparative genomic hybridization (CGH) that the pattern of chromosomal abnormalities in MCC resembles that of SCLC. One of the most frequently observed losses involved the entire chromosome 10 or partial loss of the chromosome 10 long arm (33% of examined MCC cases). The PTEN tumor‐suppressor gene has been mapped to 10q23.3 and was shown to be mutated in a variety of human cancers including SCLC. Germline PTEN mutations have been observed in familial predisposing cancer syndromes including Cowden disease. Interestingly, an association between Cowden syndrome and Merkel cell carcinoma has been reported. To study the possible role of PTEN in MCC oncogenesis, loss of heterozygosity (LOH) analysis for the 10q23 region was performed on 26 MCC tumor samples from 23 MCC patients. The PTEN locus was deleted in 9 of 21 (43%) informative MCC tumor samples [7 of 18 (39%) MCC patients]. Despite this high frequency of LOH at 10q23, mutation and homozygous deletion screening of the PTEN gene revealed only one tumor with a nonsense mutation and a second with a homozygous deletion of exon 9. These data suggest that either alternative mechanisms lead to inactivation of the PTEN gene or that other tumor‐suppressor genes at chromosome 10 are implicated in the development of MCC.


Pigment Cell & Melanoma Research | 2008

POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis.

Anthony L. Cook; Richard A. Sturm

Several parallels between stem cell biology and tumour behaviour have been discovered in recent times. Such commonality is apparent in the unlimited capacity for cell division together with the lack of a differentiated phenotype in embryonic and adult stem cells, traits shared with tumour cells. Differentiation is a tightly regulated process that is mediated by the actions of multiple transcription factor families. The POU domain‐containing family of transcription factors contains multiple mammalian members divided into six classes, which can be expressed broadly or in a cell‐specific manner, and which are regulators of cell fate decisions of many different lineages. Target gene regulation can occur via a POU factor acting alone, or in combination with other POU proteins, ubiquitous co‐activators or co‐repressors, or other lineage restricted transcription factors. Aberrant levels of POU proteins have been found in several malignancies, including melanoma, connecting the otherwise developmentally restricted gene regulatory functions of POU transcription factors to the critical determinants of malignant transformation. Here, we focus on the role of the BRN2 (POU3F2/N‐Oct‐3) transcription factor in the melanocytic lineage where it may co‐ordinate normal developmental cues that can be re‐activated in melanoma. Recent studies have shown BRN2 to be responsive to MAPK pathway activation and to modulate the levels of MITF so as to suppress the differentiated melanocytic phenotype and to enhance tumour metastasis.


Oncogene | 2004

Gene-expression profiling reveals distinct expression patterns for Classic versus Variant Merkel cell phenotypes and new classifier genes to distinguish Merkel cell from small-cell lung carcinoma.

Mireille Van Gele; Glen M. Boyle; Anthony L. Cook; Jo Vandesompele; Tom Boonefaes; Pieter Rottiers; Nadine Van Roy; Anne De Paepe; Peter G. Parsons; J. Helen Leonard; Frank Speleman

Merkel cell carcinoma (MCC) is a rare aggressive skin tumor which shares histopathological and genetic features with small-cell lung carcinoma (SCLC), both are of neuroendocrine origin. Comparable to SCLC, MCC cell lines are classified into two different biochemical subgroups designated as ‘Classic’ and ‘Variant’. With the aim to identify typical gene-expression signatures associated with these phenotypically different MCC cell lines subgroups and to search for differentially expressed genes between MCC and SCLC, we used cDNA arrays to profile 10 MCC cell lines and four SCLC cell lines. Using significance analysis of microarrays, we defined a set of 76 differentially expressed genes that allowed unequivocal identification of Classic and Variant MCC subgroups. We assume that the differential expression levels of some of these genes reflect, analogous to SCLC, the different biological and clinical properties of Classic and Variant MCC phenotypes. Therefore, they may serve as useful prognostic markers and potential targets for the development of new therapeutic interventions specific for each subgroup. Moreover, our analysis identified 17 powerful classifier genes capable of discriminating MCC from SCLC. Real-time quantitative RT–PCR analysis of these genes on 26 additional MCC and SCLC samples confirmed their diagnostic classification potential, opening opportunities for new investigations into these aggressive cancers.


PLOS ONE | 2011

NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease

Anthony L. Cook; Alejandra Mariel Vitale; Sugandha Ravishankar; Nicholas Matigian; Greg T. Sutherland; Jianguo Shan; Ratneswary Sutharsan; Chris Perry; Peter A. Silburn; George D. Mellick; Murray L. Whitelaw; Christine A. Wells; Alan Mackay-Sim; Stephen A. Wood

Background Without appropriate cellular models the etiology of idiopathic Parkinsons disease remains unknown. We recently reported a novel patient-derived cellular model generated from biopsies of the olfactory mucosa (termed olfactory neurosphere-derived (hONS) cells) which express functional and genetic differences in a disease-specific manner. Transcriptomic analysis of Patient and Control hONS cells identified the NRF2 transcription factor signalling pathway as the most differentially expressed in Parkinsons disease. Results We tested the robustness of our initial findings by including additional cell lines and confirmed that hONS cells from Patients had 20% reductions in reduced glutathione levels and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to cultures from healthy Control donors. We also confirmed that Patient hONS cells are in a state of oxidative stress due to higher production of H2O2 than Control cultures. siRNA-mediated ablation of NRF2 in Control donor cells decreased both total glutathione content and MTS metabolism to levels detected in cells from Parkinsons Disease patients. Conversely, and more importantly, we showed that activation of the NRF2 pathway in Parkinsons disease hONS cultures restored glutathione levels and MTS metabolism to Control levels. Paradoxically, transcriptomic analysis after NRF2 pathway activation revealed an increased number of differentially expressed mRNAs within the NRF2 pathway in L-SUL treated Patient-derived hONS cells compared to L-SUL treated Controls, even though their metabolism was restored to normal. We also identified differential expression of the PI3K/AKT signalling pathway, but only post-treatment. Conclusions Our results confirmed NRF2 as a potential therapeutic target for Parkinsons disease and provided the first demonstration that NRF2 function was inducible in Patient-derived cells from donors with uniquely varied genetic backgrounds. However, our results also demonstrated that the response of PD patient-derived cells was not co-ordinated in the same way as in Control cells. This may be an important factor when developing new therapeutics.


Traffic | 2011

The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking

Kimberley A. Beaumont; Nicholas A. Hamilton; Matthew T. Moores; Darren L. Brown; Norihiko Ohbayashi; Oliver Cairncross; Anthony L. Cook; Aaron G. Smith; Ryo Misaki; Mitsunori Fukuda; Tomohiko Taguchi; Richard A. Sturm; Jennifer L. Stow

Rab GTPases including Rab27a, Rab38 and Rab32 function in melanosome maturation or trafficking in melanocytes. A screen to identify additional Rabs involved in these processes revealed the localization of GFP‐Rab17 on recycling endosomes (REs) and melanosomes in melanocytic cells. Rab17 mRNA expression is regulated by microphthalmia transcription factor (MITF), a characteristic of known pigmentation genes. Rab17 siRNA knockdown in melanoma cells quantitatively increased melanosome concentration at the cell periphery. Rab17 knockdown did not inhibit melanosome maturation nor movement, but it caused accumulation of melanin inside cells. Double knockdown of Rab17 and Rab27a indicated that Rab17 acts on melanosomes downstream of Rab27a. Filopodia are known to play a role in melanosome transfer, and in Rab17 knockdown cells filopodia formation was inhibited. Furthermore, we show that stimulation of melanoma cells with α‐melanocyte‐stimulating hormone induces filopodia formation, supporting a role for filopodia in melanosome release. Cell stimulation also caused redistribution of REs to the periphery, and knockdown of additional RE‐associated Rabs 11a and 11b produced a similar accumulation of melanosomes and melanin to that seen after loss of Rab17. Our findings reveal new functions for RE and Rab17 in pigmentation through a distal step in the process of melanosome release via filopodia.

Collaboration


Dive into the Anthony L. Cook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Helen Leonard

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Glen M. Boyle

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter G. Parsons

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron G. Smith

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Pébay

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge