Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alex W. Hewitt is active.

Publication


Featured researches published by Alex W. Hewitt.


Scientific Reports | 2016

Assessment of polygenic effects links primary open-angle glaucoma and age-related macular degeneration.

Gabriel Cuellar-Partida; Jamie E. Craig; Kathryn P. Burdon; Jie Jin Wang; Brendan J. Vote; Emmanuelle Souzeau; Ian McAllister; Timothy Isaacs; Stewart Lake; David A. Mackey; Ian Constable; Paul Mitchell; Alex W. Hewitt; Stuart MacGregor

Primary open-angle glaucoma (POAG) and age-related macular degeneration (AMD) are leading causes of irreversible blindness. Several loci have been mapped using genome-wide association studies. Until very recently, there was no recognized overlap in the genetic contribution to AMD and POAG. At genome-wide significance level, only ABCA1 harbors associations to both diseases. Here, we investigated the genetic architecture of POAG and AMD using genome-wide array data. We estimated the heritability for POAG (h2g = 0.42 ± 0.09) and AMD (h2g = 0.71 ± 0.08). Removing known loci for POAG and AMD decreased the h2g estimates to 0.36 and 0.24, respectively. There was evidence for a positive genetic correlation between POAG and AMD (rg = 0.47 ± 0.25) which remained after removing known loci (rg = 0.64 ± 0.31). We also found that the genetic correlation between sexes for POAG was likely to be less than 1 (rg = 0.33 ± 0.24), suggesting that differences of prevalence among genders may be partly due to heritable factors.


PLOS ONE | 2013

Genetic loci for retinal arteriolar microcirculation

Xueling Sim; Richard Jensen; M. Kamran Ikram; Mary Frances Cotch; Xiaohui Li; Stuart MacGregor; Jing Xie; Albert V. Smith; Eric Boerwinkle; Paul Mitchell; Ronald Klein; Barbara Ek Klein; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Paulus T. V. M. de Jong; Albert Hofman; Fernando Rivadeneira; André G. Uitterlinden; Cornelia M. van Duijn; Thor Aspelund; Gudny Eiriksdottir; Tamara B. Harris; Fridbert Jonasson; Lenore J. Launer; John Attia; Paul N. Baird; Stephen B. Harrap; Elizabeth G. Holliday

Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene) was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10−8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10−12 in combined meta-analysis of discovery and replication cohorts). In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.


Nature Genetics | 2011

Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1

Kathryn P. Burdon; Stuart MacGregor; Alex W. Hewitt; Shiwani Sharma; Glyn Chidlow; Richard Ad Mills; Patrick Danoy; Robert J. Casson; Ananth C. Viswanathan; Jimmy Z. Liu; John Landers; Anjali K. Henders; John P. M. Wood; Emmanuelle Souzeau; April Crawford; Paul Leo; Jie Jin Wang; Elena Rochtchina; Dale R. Nyholt; Nicholas G. Martin; Grant W. Montgomery; Paul Mitchell; Matthew A. Brown; David A. Mackey; Jamie E. Craig

We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10−10) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10−9). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10−14, OR = 1.51, 95% CI 1.35–1.68; rs4977756 combined P = 1.35 × 10−14, OR = 1.39, 95% CI 1.28–1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma.


Nature Genetics | 2010

Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma

Gudmar Thorleifsson; G. Bragi Walters; Alex W. Hewitt; Gisli Masson; Agnar Helgason; Andrew T. DeWan; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Sigurjon A. Gudjonsson; Kristinn P. Magnusson; Hreinn Stefansson; Dennis S.C. Lam; Pancy O. S. Tam; Gudrun J Gudmundsdottir; Laura Southgate; Kathryn P. Burdon; Maria Soffia Gottfredsdottir; Micheala A. Aldred; Paul Mitchell; David St Clair; David A. Collier; Nelson L.S. Tang; Orn Sveinsson; Stuart Macgregor; Nicholas G. Martin; Angela J. Cree; Jane Gibson; Alex MacLeod; Aby Jacob; Sarah Ennis

We conducted a genome-wide association study for primary open-angle glaucoma (POAG) in 1,263 affected individuals (cases) and 34,877 controls from Iceland. We identified a common sequence variant at 7q31 (rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 × 10−10). We then replicated the association in sample sets of 2,175 POAG cases and 2,064 controls from Sweden, the UK and Australia (combined OR = 1.18, P = 0.0015) and in 299 POAG cases and 580 unaffected controls from Hong Kong and Shantou, China (combined OR = 5.42, P = 0.0021). The risk variant identified here is located close to CAV1 and CAV2, both of which are expressed in the trabecular meshwork and retinal ganglion cells that are involved in the pathogenesis of POAG.


Nature Genetics | 2013

Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus

Yi Lu; Veronique Vitart; Kathryn P. Burdon; Chiea Chuen Khor; Yelena Bykhovskaya; Alireza Mirshahi; Alex W. Hewitt; Demelza Koehn; Pirro G. Hysi; Wishal D. Ramdas; Tanja Zeller; Eranga N. Vithana; Belinda K. Cornes; Wan-Ting Tay; E. Shyong Tai; Ching-Yu Cheng; Jianjun Liu; Jia Nee Foo; Seang-Mei Saw; Gudmar Thorleifsson; Kari Stefansson; David P. Dimasi; Richard Arthur Mills; Jenny Mountain; Wei Ang; René Hoehn; Virginie J. M. Verhoeven; Franz H. Grus; Roger C. W. Wolfs; Raphaële Castagné

Central corneal thickness (CCT) is associated with eye conditions including keratoconus and glaucoma. We performed a meta-analysis on >20,000 individuals in European and Asian populations that identified 16 new loci associated with CCT at genome-wide significance (P < 5 × 10−8). We further showed that 2 CCT-associated loci, FOXO1 and FNDC3B, conferred relatively large risks for keratoconus in 2 cohorts with 874 cases and 6,085 controls (rs2721051 near FOXO1 had odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.4–1.88, P = 2.7 × 10−10, and rs4894535 in FNDC3B had OR = 1.47, 95% CI = 1.29–1.68, P = 4.9 × 10−9). FNDC3B was also associated with primary open-angle glaucoma (P = 5.6 × 10−4; tested in 3 cohorts with 2,979 cases and 7,399 controls). Further analyses implicate the collagen and extracellular matrix pathways in the regulation of CCT.


Nature Genetics | 2010

A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25

Pirro G. Hysi; Terri L. Young; David A. Mackey; Toby Andrew; Alberto Fernández-Medarde; Abbas M Solouki; Alex W. Hewitt; Stuart Macgregor; Johannes R. Vingerling; Yi-Ju Li; M. Kamran Ikram; Lee Yiu Fai; Pak Sham; Lara Manyes; A. Porteros; Margarida C. Lopes; Francis Carbonaro; Samantha J. Fahy; Nicholas G. Martin; Cornelia M. van Duijn; Tim D. Spector; Jugnoo S. Rahi; Eugenio Santos; Caroline C. W. Klaver; Christopher J. Hammond

Myopia and hyperopia are at opposite ends of the continuum of refraction, the measure of the eye′s ability to focus light, which is an important cause of visual impairment (when aberrant) and is a highly heritable trait. We conducted a genome-wide association study for refractive error in 4,270 individuals from the TwinsUK cohort. We identified SNPs on 15q25 associated with refractive error (rs8027411, P = 7.91 × 10−8). We replicated this association in six adult cohorts of European ancestry with a combined 13,414 individuals (combined P = 2.07 × 10−9). This locus overlaps the transcription initiation site of RASGRF1, which is highly expressed in neurons and retina and has previously been implicated in retinal function and memory consolidation. Rasgrf1−/− mice show a heavier average crystalline lens (P = 0.001). The identification of a susceptibility locus for refractive error on 15q25 will be important in characterizing the molecular mechanism responsible for the most common cause of visual impairment.


Neuropsychologia | 2009

Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families

Sarah E. Medland; David L. Duffy; Margaret J. Wright; Gina Geffen; David A. Hay; Florence Levy; Catherina E.M. van-Beijsterveldt; Gonneke Willemsen; Grant Townsend; Vicki White; Alex W. Hewitt; David A. Mackey; J. Michael Bailey; Wendy S. Slutske; Dale R. Nyholt; Susan A. Treloar; Nicholas G. Martin; Dorret I. Boomsma

Handedness refers to a consistent asymmetry in skill or preferential use between the hands and is related to lateralization within the brain of other functions such as language. Previous twin studies of handedness have yielded inconsistent results resulting from a general lack of statistical power to find significant effects. Here we present analyses from a large international collaborative study of handedness (assessed by writing/drawing or self report) in Australian and Dutch twins and their siblings (54,270 individuals from 25,732 families). Maximum likelihood analyses incorporating the effects of known covariates (sex, year of birth and birth weight) revealed no evidence of hormonal transfer, mirror imaging or twin specific effects. There were also no differences in prevalence between zygosity groups or between twins and their singleton siblings. Consistent with previous meta-analyses, additive genetic effects accounted for about a quarter (23.64%) of the variance (95%CI 20.17, 27.09%) with the remainder accounted for by non-shared environmental influences. The implications of these findings for handedness both as a primary phenotype and as a covariate in linkage and association analyses are discussed.


Diabetes | 2009

A Systematic Meta-Analysis of Genetic Association Studies for Diabetic Retinopathy

Sotoodeh Abhary; Alex W. Hewitt; Kathryn P. Burdon; Jamie E. Craig

OBJECTIVE Diabetic retinopathy is a sight-threatening microvascular complication of diabetes with a complex multifactorial pathogenesis. A systematic meta-analysis was undertaken to collectively assess genetic studies and determine which previously investigated polymorphisms are associated with diabetic retinopathy. RESEARCH DESIGN AND METHODS All studies investigating the association of genetic variants with the development of diabetic retinopathy were identified in PubMed and ISI Web of Knowledge. Crude odds ratios (ORs) and 95% CIs were calculated for single nucleotide polymorphisms and microsatellite markers previously investigated in at least two published studies. RESULTS Twenty genes and 34 variants have previously been studied in multiple cohorts. The aldose reductase (AKR1B1) gene was found to have the largest number of polymorphisms significantly associated with diabetic retinopathy. The z−2 micro satellite was found to confer risk (OR 2.33 [95% CI 1.49–3.64], P = 2 × 10−4) in type 1 and type 2 diabetes and z+2 to confer protection (0.58 [0.36–0.93], P = 0.02) against diabetic retinopathy in type 2 diabetes regardless of ethnicity. The T allele of the AKR1B1 promoter rs759853 variant is also significantly protective against diabetic retinopathy in type 1 diabetes (0.5 [0.35–0.71], P = 1.00 × 10−4), regardless of ethnicity. These associations were also found in the white population alone (P < 0.05). Polymorphisms in NOS3, VEGF, ITGA2, and ICAM1 are also associated with diabetic retinopathy after meta-analysis. CONCLUSIONS Variations within the AKR1B1 gene are highly significantly associated with diabetic retinopathy development irrespective of ethnicity. Identification of genetic risk factors in diabetic retinopathy will assist in further understanding of this complex and debilitating diabetes complication.


PLOS ONE | 2013

Genome-Wide Association Study of Retinopathy in Individuals without Diabetes

Richard Jensen; Xueling Sim; Xiaohui Li; Mary Frances Cotch; M. Kamran Ikram; Elizabeth G. Holliday; Gudny Eiriksdottir; Tamara B. Harris; Fridbert Jonasson; Barbara E. K. Klein; Lenore J. Launer; Albert V. Smith; Eric Boerwinkle; Ning Cheung; Alex W. Hewitt; Gerald Liew; Paul Mitchell; Jie Jin Wang; John Attia; Rodney J. Scott; Nicole L. Glazer; Thomas Lumley; Barbara McKnight; Bruce M. Psaty; Kent D. Taylor; Albert Hofman; Paulus T. V. M. de Jong; Fernando Rivadeneira; André G. Uitterlinden; Wan Ting Tay

Background Mild retinopathy (microaneurysms or dot-blot hemorrhages) is observed in persons without diabetes or hypertension and may reflect microvascular disease in other organs. We conducted a genome-wide association study (GWAS) of mild retinopathy in persons without diabetes. Methods A working group agreed on phenotype harmonization, covariate selection and analytic plans for within-cohort GWAS. An inverse-variance weighted fixed effects meta-analysis was performed with GWAS results from six cohorts of 19,411 Caucasians. The primary analysis included individuals without diabetes and secondary analyses were stratified by hypertension status. We also singled out the results from single nucleotide polymorphisms (SNPs) previously shown to be associated with diabetes and hypertension, the two most common causes of retinopathy. Results No SNPs reached genome-wide significance in the primary analysis or the secondary analysis of participants with hypertension. SNP, rs12155400, in the histone deacetylase 9 gene (HDAC9) on chromosome 7, was associated with retinopathy in analysis of participants without hypertension, −1.3±0.23 (beta ± standard error), p = 6.6×10−9. Evidence suggests this was a false positive finding. The minor allele frequency was low (∼2%), the quality of the imputation was moderate (r2 ∼0.7), and no other common variants in the HDAC9 gene were associated with the outcome. SNPs found to be associated with diabetes and hypertension in other GWAS were not associated with retinopathy in persons without diabetes or in subgroups with or without hypertension. Conclusions This GWAS of retinopathy in individuals without diabetes showed little evidence of genetic associations. Further studies are needed to identify genes associated with these signs in order to help unravel novel pathways and determinants of microvascular diseases.


PLOS Genetics | 2012

Common Genetic Determinants of Intraocular Pressure and Primary Open-Angle Glaucoma

Leonieke M. E. van Koolwijk; Wishal D. Ramdas; M. Kamran Ikram; Nomdo M. Jansonius; Francesca Pasutto; Pirro G. Hysi; Stuart MacGregor; Sarah F. Janssen; Alex W. Hewitt; Ananth C. Viswanathan; Jacoline B. ten Brink; S. Mohsen Hosseini; Najaf Amin; Dominiek D. G. Despriet; Jacqueline J. M. Willemse-Assink; Rogier Kramer; Fernando Rivadeneira; Maksim Struchalin; Yurii S. Aulchenko; Nicole Weisschuh; Matthias Zenkel; Christian Y. Mardin; Eugen Gramer; Ulrich Welge-Lüssen; Grant W. Montgomery; Francis Carbonaro; Terri L. Young; Céline Bellenguez; P. McGuffin; Paul J. Foster

Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4×10−8), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6×10−8). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4×10−2 for rs11656696 and p = 9.1×10−4 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.

Collaboration


Dive into the Alex W. Hewitt's collaboration.

Top Co-Authors

Avatar

David A. Mackey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart MacGregor

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seyhan Yazar

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Alice Pébay

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge