Anthony Laing
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony Laing.
Science | 2015
Jacques Carolan; Christopher Harrold; Chris Sparrow; Enrique Martín-López; Nicholas J. Russell; Joshua W. Silverstone; Peter Shadbolt; Nobuyuki Matsuda; Manabu Oguma; M. Itoh; Graham David Marshall; Mark G. Thompson; Jonathan C. F. Matthews; Toshikazu Hashimoto; Jeremy L. O’Brien; Anthony Laing
Complex quantum optical circuitry Encoding and manipulating information in the states of single photons provides a potential platform for quantum computing and communication. Carolan et al. developed a reconfigurable integrated waveguide device fabricated in a glass chip (see the Perspective by Rohde and Dowling). The device allowed for universal linear optics transformations on six wave-guides using 15 integrated Mach-Zehnder interferometers, each of which was individually programmable. Functional performance in a number of applications in optics and quantum optics demonstrates the versatility of the devices reprogrammable architecture. Science, this issue p. 711; see also p. 696 A reconfigurable optical circuit provides a platform for a photonically-based quantum computer. [Also see Perspective by Rohde and Dowling] Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies.
Nature Photonics | 2012
Peter Shadbolt; Maria Rodas Verde; Alberto Peruzzo; Alberto Politi; Anthony Laing; Mirko Lobino; Jonathan C. F. Matthews; Mark G. Thompson; Jeremy L. O'Brien
Researchers demonstrate a reconfigurable integrated quantum photonic circuit. The device comprises a two-qubit entangling gate, several Hadamard-like gates and eight variable phase shifters. The set-up is used to generate entangled states, violate a Bell-type inequality with a continuum of partially entangled states and demonstrate the generation of arbitrary one-qubit mixed states.
Nature Communications | 2011
Alberto Peruzzo; Anthony Laing; Alberto Politi; Terry Rudolph; Jeremy L. O'Brien
Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits.
international quantum electronics conference | 2013
Enrique Martin-Lopez; Anthony Laing; Thomas Lawson; Roberto Alvarez; Xiao-Qi Zhou; Jeremy L. O'Brien
Quantum algorithms are computational routines that exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shors quantum factoring algorithm is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the large number of resources required, to date, there have been only four small scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shors algorithm in which then qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N = 21. Significantly, the algorithmic output exhibits structure that is distinguishable from noise, in contrast to previous demonstrations.
Nature Photonics | 2014
Jacques Carolan; Jasmin D. A. Meinecke; Peter Shadbolt; Nicholas J. Russell; Nur Ismail; Kerstin Worhoff; Terry Rudolph; Mark G. Thompson; Jeremy L. O'Brien; Jonathan C. F. Matthews; Anthony Laing
Scalable methods employing a random unitary chip and a quantum walk chip are developed to experimentally verify correct operation for large-scale boson sampling. Experimental analysis reveals that the resulting statistics of the output of a linear interferometer fed by indistinguishable single-photon states exhibits true non-classical characteristics.
Physical Review Letters | 2014
Austin P. Lund; Anthony Laing; Saleh Rahimi-Keshari; Terry Rudolph; Jeremy L. O'Brien; Timothy C. Ralph
We pose a randomized boson-sampling problem. Strong evidence exists that such a problem becomes intractable on a classical computer as a function of the number of bosons. We describe a quantum optical processor that can solve this problem efficiently based on a Gaussian input state, a linear optical network, and nonadaptive photon counting measurements. All the elements required to build such a processor currently exist. The demonstration of such a device would provide empirical evidence that quantum computers can, indeed, outperform classical computers and could lead to applications.
Physical Review A | 2010
Anthony Laing; Valerio Scarani; John Rarity; Jeremy L. O'Brien
We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides. We compute the asymptotic secret key rate for a two-qubit source, which coincides with the rate of the six-state protocol for white noise. We give the generalization of the protocol to higher-dimensional systems and detail a scheme for physical implementation in the three-dimensional qutrit case.
Applied Physics Letters | 2010
Anthony Laing; Alberto Peruzzo; Alberto Politi; Maria Rodas Verde; Matthaeus Halder; Timothy C. Ralph; Mark G. Thompson; Jeremy L. O’Brien
We demonstrate photonic quantum circuits that operate at the stringent levels that will be required for future quantum information science and technology. These circuits are fabricated from silica-on-silicon waveguides forming directional couplers and interferometers. While our focus is on the operation of quantum circuits, to test this operation required construction of a photon source that produced near-identical pairs of photons. We show nonclassical interference with two photons and a two-photon entangling logic gate that operate with near-unit fidelity. These results are a significant step toward large-scale operation of photonic quantum circuits.
Physical Review Letters | 2014
Pei Zhang; K. Aungskunsiri; Eduardo Martín-López; Joachim Wabnig; Mirko Lobino; R. W. Nock; J. Munns; D. Bonneau; P. Jiang; Hongwei Li; Anthony Laing; John Rarity; Antti Niskanen; Mark G. Thompson; Jeremy L. O'Brien
We demonstrate a client-server quantum key distribution (QKD) scheme. Large resources such as laser and detectors are situated at the server side, which is accessible via telecom fiber to a client requiring only an on-chip polarization rotator, which may be integrated into a handheld device. The detrimental effects of unstable fiber birefringence are overcome by employing the reference-frame-independent QKD protocol for polarization qubits in polarization maintaining fiber, where standard QKD protocols fail, as we show for comparison. This opens the way for quantum enhanced secure communications between companies and members of the general public equipped with handheld mobile devices, via telecom-fiber tethering.
Nature Physics | 2014
Peter Shadbolt; Jonathan C. F. Mathews; Anthony Laing; Jeremy L. O'Brien
Starting with wave-particle duality, experiments with light have played a major role in the development of quantum theory. Advances in photonic technologies allow for improved tests of quantum complementarity, delayed-choice and nonlocality.