Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan C. F. Matthews is active.

Publication


Featured researches published by Jonathan C. F. Matthews.


Science | 2010

Quantum Walks of Correlated Photons

Alberto Peruzzo; Mirko Lobino; Jonathan C. F. Matthews; Nobuyuki Matsuda; Alberto Politi; Konstantinos Poulios; Xiao-Qi Zhou; Yoav Lahini; Nur Ismail; Kerstin Worhoff; Yaron Bromberg; Yaron Silberberg; Mark G. Thompson; Jeremy L. O'Brien

A Correlated Quantum Walk Random walks are powerful tools for modeling statistical events. The analogous quantum walk involves particles tunneling between available sites. Peruzzo et al. (p. 1500; see the Perspective by Hillery) now report on the quantum walk of a correlated pair of photons propagating through a coupled waveguide array. The output pattern resulting from the injection of two correlated photons possess quantum features, indicating that the photons retain their correlations as they walk randomly through the waveguide array, allowing scale-up and parallel searches over many possible paths. Pairs of correlated photons retain their quantum-mechanical correlations as they propagate through a waveguide maze. Quantum walks of correlated particles offer the possibility of studying large-scale quantum interference; simulating biological, chemical, and physical systems; and providing a route to universal quantum computation. We have demonstrated quantum walks of two identical photons in an array of 21 continuously evanescently coupled waveguides in a SiOxNy chip. We observed quantum correlations, violating a classical limit by 76 standard deviations, and found that the correlations depended critically on the input state of the quantum walk. These results present a powerful approach to achieving quantum walks with correlated particles to encode information in an exponentially larger state space.


Science | 2009

Shor's Quantum Factoring Algorithm on a Photonic Chip

Alberto Politi; Jonathan C. F. Matthews; Jeremy L. O'Brien

A quantum algorithm to factor numbers is implemented on an optical chip. Shor’s quantum factoring algorithm finds the prime factors of a large number exponentially faster than any other known method, a task that lies at the heart of modern information security, particularly on the Internet. This algorithm requires a quantum computer, a device that harnesses the massive parellism afforded by quantum superposition and entanglement of quantum bits (or qubits). We report the demonstration of a compiled version of Shor’s algorithm on an integrated waveguide silica-on-silicon chip that guides four single-photon qubits through the computation to factor 15.


Nature Photonics | 2009

Manipulation of multiphoton entanglement in waveguide quantum circuits

Jonathan C. F. Matthews; Alberto Politi; André Stefanov; Jeremy L. O'Brien

Precise control of single-photon states and multiphoton entanglement is demonstrated on-chip. Two- and four-photon entangled states have now been generated in a waveguide circuit and their interference tuned. These results open up adaptive and reconfigurable photonic quantum circuits not just for single photons, but for all quantum states of light.


Optics Express | 2009

Laser written waveguide photonic quantum circuits

Graham D. Marshall; Alberto Politi; Jonathan C. F. Matthews; Peter Dekker; Martin Ams; Michael J. Withford; Jeremy L. O'Brien

We report photonic quantum circuits created using an ultrafast laser processing technique that is rapid, requires no lithographic mask and can be used to create three-dimensional networks of waveguide devices. We have characterized directional couplers--the key functional elements of photonic quantum circuits--and found that they perform as well as lithographically produced waveguide devices. We further demonstrate high-performance interferometers and an important multi-photon quantum interference phenomenon for the first time in integrated optics. This direct-write approach will enable the rapid development of sophisticated quantum optical circuits and their scaling into three-dimensions.


Nature Communications | 2014

Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity

Kathryn A. Whitehead; J. Robert Dorkin; Arturo Vegas; Philip H. Chang; Omid Veiseh; Jonathan C. F. Matthews; Owen S. Fenton; Yunlong Zhang; Karsten Olejnik; Volkan Yesilyurt; Delai Chen; Scott Barros; Boris Klebanov; Tatiana Novobrantseva; Robert Langer; Daniel G. Anderson

One of the most significant challenges in the development of clinically-viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. To this end, we synthesized 1400 degradable lipidoids and evaluated their transfection ability and structure function activity. Here we show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations upon IV administration to mice (siRNA EC50 values as low as 0.01 mg/kg). Surprisingly, we identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.


Applied Physics Letters | 2012

Measuring protein concentration with entangled photons

Andrea Crespi; Mirko Lobino; Jonathan C. F. Matthews; Alberto Politi; Christopher R. Neal; Roberta Ramponi; Roberto Osellame; Jeremy L. O'Brien

Optical interferometry is amongst the most sensitive techniques for precision measurement. By increasing the light intensity, a more precise measurement can usually be made. However, if the sample is light sensitive entangled states can achieve the same precision with less exposure. This concept has been demonstrated in measurements of known optical components. Here, we use two-photon entangled states to measure the concentration of a blood protein in an aqueous buffer solution. We use an opto-fluidic device that couples a waveguide interferometer with a microfluidic channel. These results point the way to practical applications of quantum metrology to light-sensitive samples.


Physical Review A | 2007

Localization and its consequences for quantum walk algorithms and quantum communication

Jon P Keating; Noah Linden; Jonathan C. F. Matthews; Andreas Winter

The exponential speedup of quantum walks on certain graphs, relative to classical particles diffusing on the same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential suppression of motion on these graphs (even in the absence of decoherence). In fact, for physical embodiments of graphs, this will be the generic behavior. It also has implications for proposals for using spin networks, including spin chains, as quantum communication channels.


Physical Review Letters | 2011

Heralding two-photon and four-photon path entanglement on a chip

Jonathan C. F. Matthews; Alberto Politi; Damien Bonneau; Jeremy L. O'Brien

Generating quantum entanglement is not only an important scientific endeavor, but will be essential to realizing quantum-enhanced technologies, in particular, quantum-enhanced measurements with precision beyond classical limits. We investigate the heralded generation of multiphoton entanglement for quantum metrology using a reconfigurable integrated waveguide device in which projective measurement of auxiliary photons heralds the generation of path-entangled states. We use four and six-photon inputs, to analyze the heralding process of two- and four-photon NOON states-a superposition of N photons in two paths, capable of enabling phase supersensitive measurements at the Heisenberg limit. Realistic devices will include imperfections; as part of the heralded state preparation, we demonstrate phase superresolution within our chip with a state that is more robust to photon loss.


Physical Review Letters | 2013

On-Chip Manipulation of Single Photons from a Diamond Defect

Jake Kennard; J. P. Hadden; L Marseglia; Igor Aharonovich; Stefania Castelletto; Brian Patton; Alberto Politi; Jonathan C. F. Matthews; A G Sinclair; Brant C. Gibson; Steven Prawer; John Rarity; Jeremy L. O'Brien

Operating reconfigurable quantum circuits with single photon sources is a key goal of photonic quantum information science and technology. We use an integrated waveguide device containing directional couplers and a reconfigurable thermal phase controller to manipulate single photons emitted from a chromium related color center in diamond. Observation of both a wavelike interference pattern and particlelike sub-Poissionian autocorrelation functions demonstrates coherent manipulation of single photons emitted from the chromium related center and verifies wave particle duality.


New Journal of Physics | 2017

Absorption spectroscopy at the ultimate quantum limit from single-photon states

Rebecca Whittaker; Christopher Erven; Alex Neville; Monica Berry; Jeremy L. O’Brien; Hugo Cable; Jonathan C. F. Matthews

R. Whittaker, ∗ C. Erven, A. Neville, M. Berry, J. L. O’Brien, H. Cable, and J. C. F. Matthews † Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK. H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK. (Dated: August 5, 2015)

Collaboration


Dive into the Jonathan C. F. Matthews's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge