Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony N. Karnezis is active.

Publication


Featured researches published by Anthony N. Karnezis.


Nature Genetics | 2009

BrafV600E cooperates with Pten loss to induce metastatic melanoma

David Dankort; David P. Curley; Robert A. Cartlidge; Betsy Nelson; Anthony N. Karnezis; William Damsky; Mingjian J. You; Ronald A. DePinho; Martin McMahon; Marcus Bosenberg

Mutational activation of BRAF is the earliest and most common genetic alteration in human melanoma. To build a model of human melanoma, we generated mice with conditional melanocyte-specific expression of BRafV600E. Upon induction of BRafV600E expression, mice developed benign melanocytic hyperplasias that failed to progress to melanoma over 15–20 months. By contrast, expression of BRafV600E combined with Pten tumor suppressor gene silencing elicited development of melanoma with 100% penetrance, short latency and with metastases observed in lymph nodes and lungs. Melanoma was prevented by inhibitors of mTorc1 (rapamycin) or MEK1/2 (PD325901) but, upon cessation of drug administration, mice developed melanoma, indicating the presence of long-lived melanoma-initiating cells in this system. Notably, combined treatment with rapamycin and PD325901 led to shrinkage of established melanomas. These mice, engineered with a common genetic profile to human melanoma, provide a system to study melanomas cardinal feature of metastasis and for preclinical evaluation of agents designed to prevent or treat metastatic disease.


Nature | 2008

Modelling Myc inhibition as a cancer therapy

Laura Soucek; Jonathan R. Whitfield; Carla P. Martins; Andrew J. Finch; Daniel J. Murphy; Nicole M. Sodir; Anthony N. Karnezis; Lamorna Brown Swigart; Sergio Nasi; Gerard I. Evan

Myc is a pleiotropic basic helix–loop–helix leucine zipper transcription factor that coordinates expression of the diverse intracellular and extracellular programs that together are necessary for growth and expansion of somatic cells. In principle, this makes inhibition of Myc an attractive pharmacological approach for treating diverse types of cancer. However, enthusiasm has been muted by lack of direct evidence that Myc inhibition would be therapeutically efficacious, concerns that it would induce serious side effects by inhibiting proliferation of normal tissues, and practical difficulties in designing Myc inhibitory drugs. We have modelled genetically both the therapeutic impact and the side effects of systemic Myc inhibition in a preclinical mouse model of Ras-induced lung adenocarcinoma by reversible, systemic expression of a dominant-interfering Myc mutant. We show that Myc inhibition triggers rapid regression of incipient and established lung tumours, defining an unexpected role for endogenous Myc function in the maintenance of Ras-dependent tumours in vivo. Systemic Myc inhibition also exerts profound effects on normal regenerating tissues. However, these effects are well tolerated over extended periods and rapidly and completely reversible. Our data demonstrate the feasibility of targeting Myc, a common downstream conduit for many oncogenic signals, as an effective, efficient and tumour-specific cancer therapy.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Cell | 2011

Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression

Colleen A. Brady; Dadi Jiang; Stephano Spano Mello; Thomas M. Johnson; Lesley A. Jarvis; Margaret M. Kozak; Daniela Kenzelmann Broz; Shashwati Basak; Eunice J. Park; Margaret McLaughlin; Anthony N. Karnezis; Laura D. Attardi

The molecular basis for p53-mediated tumor suppression remains unclear. Here, to elucidate mechanisms of p53 tumor suppression, we use knockin mice expressing an allelic series of p53 transcriptional activation mutants. Microarray analysis reveals that one mutant, p53(25,26), is severely compromised for transactivation of most p53 target genes, and, moreover, p53(25,26) cannot induce G(1)-arrest or apoptosis in response to acute DNA damage. Surprisingly, p53(25,26) retains robust activity in senescence and tumor suppression, indicating that efficient transactivation of the majority of known p53 targets is dispensable for these pathways. In contrast, the transactivation-dead p53(25,26,53,54) mutant cannot induce senescence or inhibit tumorigenesis, like p53 nullizygosity. Thus, p53 transactivation is essential for tumor suppression but, intriguingly, in association with a small set of novel p53 target genes. Together, our studies distinguish the p53 transcriptional programs involved in acute DNA-damage responses and tumor suppression-a critical goal for designing therapeutics that block p53-dependent side effects of chemotherapy without compromising p53 tumor suppression.


Cancer Cell | 2008

Distinct Thresholds Govern Myc's Biological Output In Vivo

Daniel J. Murphy; Melissa R. Junttila; Laurent Pouyet; Anthony N. Karnezis; Ksenya Shchors; Duyen A. Bui; Lamorna Brown-Swigart; Leisa Johnson; Gerard I. Evan

Deregulated Myc triggers a variety of intrinsic tumor suppressor programs that serve to restrain Mycs oncogenic potential. Since Myc activity is also required for normal cell proliferation, activation of intrinsic tumor suppression must be triggered only when Myc signaling is oncogenic. However, how cells discriminate between normal and oncogenic Myc is unknown. Here we show that distinct threshold levels of Myc govern its output in vivo: low levels of deregulated Myc are competent to drive ectopic proliferation of somatic cells and oncogenesis, but activation of the apoptotic and ARF/p53 intrinsic tumor surveillance pathways requires Myc overexpression. The requirement to keep activated oncogenes at a low level to avoid engaging tumor suppression is likely an important selective pressure governing the early stages of tumor microevolution.


Nature | 2010

Selective activation of p53-mediated tumour suppression in high-grade tumours

Melissa R. Junttila; Anthony N. Karnezis; Daniel Garcia; Francesc Madriles; Roderik Kortlever; Fanya Rostker; Lamorna Brown Swigart; David Pham; Youngho Seo; Gerard I. Evan; Carla P. Martins

Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10–15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19ARF (ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.


Nature Medicine | 2011

A crucial requirement for Hedgehog signaling in small cell lung cancer

Kwon-Sik Park; Luciano G. Martelotto; Martin Peifer; Martin L. Sos; Anthony N. Karnezis; Moe R. Mahjoub; Katie Bernard; Jamie F. Conklin; Anette Szczepny; Jing Yuan; Ribo Guo; Beatrice Ospina; Jeanette Falzon; Samara Bennett; Tracey J. Brown; Ana Markovic; Wendy Devereux; Cory A. Ocasio; James K. Chen; Tim Stearns; Roman K. Thomas; Marion Dorsch; Silvia Buonamici; D. Neil Watkins; Craig D. Peacock; Julien Sage

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer for which there is no effective treatment. Using a mouse model in which deletion of Rb1 and Trp53 in the lung epithelium of adult mice induces SCLC, we found that the Hedgehog signaling pathway is activated in SCLC cells independently of the lung microenvironment. Constitutive activation of the Hedgehog signaling molecule Smoothened (Smo) promoted the clonogenicity of human SCLC in vitro and the initiation and progression of mouse SCLC in vivo. Reciprocally, deletion of Smo in Rb1 and Trp53-mutant lung epithelial cells strongly suppressed SCLC initiation and progression in mice. Furthermore, pharmacological blockade of Hedgehog signaling inhibited the growth of mouse and human SCLC, most notably following chemotherapy. These findings show a crucial cell-intrinsic role for Hedgehog signaling in the development and maintenance of SCLC and identify Hedgehog pathway inhibition as a therapeutic strategy to slow the progression of disease and delay cancer recurrence in individuals with SCLC.


Genes & Development | 2013

Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice.

Laura Soucek; Jonathan R. Whitfield; Nicole M. Sodir; Daniel Massó-Vallés; Erika Serrano; Anthony N. Karnezis; Lamorna Brown Swigart; Gerard I. Evan

The principal reason for failure of targeted cancer therapies is the emergence of resistant clones that regenerate the tumor. Therapeutic efficacy therefore depends on not only how effectively a drug inhibits its target, but also the innate or adaptive functional redundancy of that target and its attendant pathway. In this regard, the Myc transcription factors are intriguing therapeutic targets because they serve the unique and irreplaceable role of coordinating expression of the many diverse genes that, together, are required for somatic cell proliferation. Furthermore, Myc expression is deregulated in most-perhaps all-cancers, underscoring its irreplaceable role in proliferation. We previously showed in a preclinical mouse model of non-small-cell lung cancer that systemic Myc inhibition using the dominant-negative Myc mutant Omomyc exerts a dramatic therapeutic impact, triggering rapid regression of tumors with only mild and fully reversible side effects. Using protracted episodic expression of Omomyc, we now demonstrate that metronomic Myc inhibition not only contains Ras-driven lung tumors indefinitely, but also leads to their progressive eradication. Hence, Myc does indeed serve a unique and nondegenerate role in lung tumor maintenance that cannot be complemented by any adaptive mechanism, even in the most aggressive p53-deficient tumors. These data endorse Myc as a compelling cancer drug target.


Nature Genetics | 2014

Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4

Pilar Ramos; Anthony N. Karnezis; David Craig; Aleksandar Sekulic; Megan Russell; William Hendricks; Jason J. Corneveaux; Michael T. Barrett; Karey Shumansky; Yidong Yang; Sohrab P. Shah; Leah M Prentice; Marco A. Marra; Jeffrey Kiefer; Victoria Zismann; Bodour Salhia; Jaime Prat; Emanuela D'Angelo; Blaise Clarke; Joseph G. Pressey; John H Farley; Stephen P Anthony; Richard Roden; Heather E. Cunliffe; David Huntsman; Jeffrey M. Trent

Small cell carcinoma of the ovary of hypercalcemic type (SCCOHT) is an extremely rare, aggressive cancer affecting children and young women. We identified germline and somatic inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 69% (9/13) of SCCOHT cases in addition to SMARCA4 protein loss in 82% (14/17) of SCCOHT tumors but in only 0.4% (2/485) of other primary ovarian tumors. These data implicate SMARCA4 in SCCOHT oncogenesis.


Genes & Development | 2011

Endogenous Myc maintains the tumor microenvironment

Nicole M. Sodir; Lamorna Brown Swigart; Anthony N. Karnezis; Douglas Hanahan; Gerard I. Evan; Laura Soucek

The ubiquitous deregulation of Myc in human cancers makes it an intriguing therapeutic target, a notion supported by recent studies in Ras-driven lung tumors showing that inhibiting endogenous Myc triggers ubiquitous tumor regression. However, neither the therapeutic mechanism nor the applicability of Myc inhibition to other tumor types driven by other oncogenic mechanisms is established. Here, we show that inhibition of endogenous Myc also triggers ubiquitous regression of tumors in a simian virus 40 (SV40)-driven pancreatic islet tumor model. Such regression is presaged by collapse of the tumor microenvironment and involution of tumor vasculature. Hence, in addition to its diverse intracellular roles, endogenous Myc serves an essential and nonredundant role in coupling diverse intracellular oncogenic pathways to the tumor microenvironment, further bolstering its credentials as a pharmacological target.

Collaboration


Dive into the Anthony N. Karnezis's collaboration.

Top Co-Authors

Avatar

David Huntsman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

C. Blake Gilks

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Trent

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

William Hendricks

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Pilar Ramos

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jessica N. McAlpine

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janine Senz

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge