Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony R. Braun is active.

Publication


Featured researches published by Anthony R. Braun.


Biophysical Journal | 2011

Interpretation of Fluctuation Spectra in Lipid Bilayer Simulations

Erik G. Brandt; Anthony R. Braun; Jonathan N. Sachs; John F. Nagle; Olle Edholm

Atomic resolution and coarse-grained simulations of dimyristoylphosphatidylcholine lipid bilayers were analyzed for fluctuations perpendicular to the bilayer using a completely Fourier-based method. We find that the fluctuation spectrum of motions perpendicular to the bilayer can be decomposed into just two parts: 1), a pure undulation spectrum proportional to q(-4) that dominates in the small-q regime; and 2), a molecular density structure factor contribution that dominates in the large-q regime. There is no need for a term proportional to q(-2) that has been postulated for protrusion fluctuations and that appeared to have been necessary to fit the spectrum for intermediate q. We suggest that earlier reports of such a term were due to the artifact of binning and smoothing in real space before obtaining the Fourier spectrum. The observability of an intermediate protrusion regime from the fluctuation spectrum is discussed based on measured and calculated material constants.


Journal of Biological Chemistry | 2009

Curvature dynamics of α-Synuclein familial Parkinson disease mutants. Molecular simulations of the Micelle-and Bilayer-bound forms

Jason D. Perlmutter; Anthony R. Braun; Jonathan N. Sachs

α-Synuclein remains a protein of interest due to its propensity to form fibrillar aggregates in neurodegenerative disease and its putative function in synaptic vesicle regulation. Herein, we present a series of atomistic molecular dynamics simulations of wild-type α-synuclein and three Parkinson disease familial mutants (A30P, A53T, and E46K) in two distinct environments. First, in order to match recent NMR experiments, we have simulated each protein bound to an SDS detergent micelle. Second, in order to connect more closely to the true biological environment, we have simulated the proteins bound to a 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid bilayer. In the micelle-bound case, we find that the wild type and all of the variants of α-synuclein flatten the underlying micelle, decreasing its surface area. A30P is known to lessen α-synuclein/membrane affinity and, consistent with experiment, destabilizes the simulated secondary structure. In the case of A53T, our simulations reveal a range of stabilizing hydrogen bonds that form with the threonine. In both environments, the E46K mutation, which is known to increase bilayer affinity, leads to an additional hydrogen bond between the protein and either the detergent or lipid. Simulations indicate that αS and its variants are less dynamic in the bilayer than in the micelle. Furthermore, the simulations of the mutants suggest how changes in the structure and dynamics of α-synuclein may affect its biological role.Alpha-synuclein remains a protein of interest due to its propensity to form fibrillar aggregates in neurodegenerative disease and its putative function in synaptic vesicle regulation. Herein, we present a series of atomistic molecular dynamics simulations of wild-type alpha-synuclein and three Parkinson disease familial mutants (A30P, A53T, and E46K) in two distinct environments. First, in order to match recent NMR experiments, we have simulated each protein bound to an SDS detergent micelle. Second, in order to connect more closely to the true biological environment, we have simulated the proteins bound to a 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid bilayer. In the micelle-bound case, we find that the wild type and all of the variants of alpha-synuclein flatten the underlying micelle, decreasing its surface area. A30P is known to lessen alpha-synuclein/membrane affinity and, consistent with experiment, destabilizes the simulated secondary structure. In the case of A53T, our simulations reveal a range of stabilizing hydrogen bonds that form with the threonine. In both environments, the E46K mutation, which is known to increase bilayer affinity, leads to an additional hydrogen bond between the protein and either the detergent or lipid. Simulations indicate that alphaS and its variants are less dynamic in the bilayer than in the micelle. Furthermore, the simulations of the mutants suggest how changes in the structure and dynamics of alpha-synuclein may affect its biological role.


Journal of the American Chemical Society | 2012

α-Synuclein induces both positive mean curvature and negative Gaussian curvature in membranes.

Anthony R. Braun; Eva Sevcsik; Pamela Chin; Elizabeth Rhoades; Stephanie Tristram-Nagle; Jonathan N. Sachs

Using a combination of X-ray scattering, fluorescence correlation spectroscopy, coarse-grained molecular dynamics (MD) simulations and potential of mean force calculations, we have explored the membrane remodeling effects of monomeric α-synuclein (αS). Our initial findings from multiple approaches are that αS (1) causes a significant thinning of the bilayer and (2) stabilizes positive mean curvature, such that the maximum principle curvature matches that of synaptic vesicles, αS-induced tubules, and the synthetic lipid vesicles to which the protein binds most tightly. This suggests that αS binding to synaptic vesicles likely stabilizes their intrinsic curvature. We then show that αS induces local negative Gaussian curvature, an effect that occurs in regions of αS shown previously via NMR and corroborated by MD simulation to have significant conformational flexibility. The induction of negative Gaussian curvature, which has implications for all curvature-sensing and curvature-generating amphipathic α-helices, supports a hypothesis that connects helix insertion to fusion and fission of vesicles, processes that have recently been linked to αS function. Then, in an effort to explain these biophysical properties of αS, we promote an intrinsic curvature-field model that recasts long-range protein-protein interactions in terms of the interactions between the local curvature fields generated by lipid-protein complexes.


Biophysical Journal | 2011

Determination of Electron Density Profiles and Area from Simulations of Undulating Membranes

Anthony R. Braun; Erik G. Brandt; Olle Edholm; John F. Nagle; Jonathan N. Sachs

The traditional method for extracting electron density and other transmembrane profiles from molecular dynamics simulations of lipid bilayers fails for large bilayer systems, because it assumes a flat reference surface that does not take into account long wavelength undulations. We have developed what we believe to be a novel set of methods to characterize these undulations and extract the underlying profiles in the large systems. Our approach first obtains an undulation reference surface for each frame in the simulation and subsequently isolates the long-wavelength undulations by filtering out the intrinsic short wavelength modes. We then describe two methods to obtain the appropriate profiles from the undulating reference surface. Most combinations of methods give similar results for the electron density profiles of our simulations of 1024 DMPC lipids. From simulations of smaller systems, we also characterize the finite size effect related to the boundary conditions of the simulation box. In addition, we have developed a set of methods that use the undulation reference surface to determine the true area per lipid which, due to undulations, is larger than the projected area commonly reported from simulations.


Journal of the American Chemical Society | 2014

α-synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry

Anthony R. Braun; Michael M. Lacy; Vanessa C. Ducas; Elizabeth Rhoades; Jonathan N. Sachs

We have investigated the membrane remodeling capacity of the N-terminal membrane-binding domain of α-synuclein (α-Syn100). Using fluorescence correlation spectroscopy and vesicle clearance assays, we show that α-Syn100 fully tubulates POPG vesicles, the first demonstration that the amphipathic helix on its own is capable of this effect. We also show that at equal density of membrane-bound protein, α-Syn has dramatically reduced affinity for, and does not tubulate, vesicles composed of a 1:1 POPG:POPC mixture. Coarse-grained molecular dynamics simulations suggested that the difference between the pure POPG and mixture results may be attributed to differences in the protein’s partition depth, the membrane’s hydrophobic thickness, and disruption of acyl chain order. To explore the importance of these attributes compared with the role of the reduced binding energy, we created an α-Syn100 variant in which we removed the hydrophobic core of the non-amyloid component (NAC) domain and tested its impact on pure POPG vesicles. We observed a substantial reduction in binding affinity and tubulation, and simulations of the NAC-null protein suggested that the reduced binding energy increases the protein mobility on the bilayer surface, likely impacting the protein’s ability to assemble into organized pretubule structures. We also used simulations to explore a potential role for interleaflet coupling as an additional driving force for tubulation. We conclude that symmetry across the leaflets in the tubulated state maximizes the interaction energy of the two leaflets and relieves the strain induced by the hydrophobic void beneath the amphipathic helix.


Journal of Biological Chemistry | 2012

Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Induces Death Receptor 5 Networks That Are Highly Organized

Christopher C. Valley; Andrew K. Lewis; Deepti Mudaliar; Jason D. Perlmutter; Anthony R. Braun; Christine B. Karim; David D. Thomas; Jonathan R. Brody; Jonathan N. Sachs

Background: Whether ligand-induced clusters of DR5 have a specific structural organization is unknown. Results: Ligand binding results in the formation of death receptor dimers that exist within high molecular weight networks. Conclusion: Ligand-induced DR5 clusters are highly organized networks formed through dimerization of receptor trimers. Significance: The biophysical character of DR5 networks may have implications for future rational design of DR5-targeted therapeutics. Recent evidence suggests that TNF-related apoptosis-inducing ligand (TRAIL), a death-inducing cytokine with anti-tumor potential, initiates apoptosis by re-organizing TRAIL receptors into large clusters, although the structure of these clusters and the mechanism by which they assemble are unknown. Here, we demonstrate that TRAIL receptor 2 (DR5) forms receptor dimers in a ligand-dependent manner at endogenous receptor levels, and these receptor dimers exist within high molecular weight networks. Using mutational analysis, FRET, fluorescence microscopy, synthetic biochemistry, and molecular modeling, we find that receptor dimerization relies upon covalent and noncovalent interactions between membrane-proximal residues. Additionally, by using FRET, we show that the oligomeric structure of two functional isoforms of DR5 is indistinguishable. The resulting model of DR5 activation should revise the accepted architecture of the functioning units of DR5 and the structurally homologous TNF receptor superfamily members.


Journal of Physical Chemistry B | 2013

Comparing Simulations of Lipid Bilayers to Scattering Data: The GROMOS 43A1-S3 Force Field

Anthony R. Braun; Jonathan N. Sachs; John F. Nagle

Simulations of DOPC at T = 303 K were performed using the united atom force field 43A1-S3 at six fixed projected areas, A(P) = 62, 64, 66, 68, 70, and 72 Å(2), as well as a tensionless simulation that produced an average A(NPT) = 65.8 Å(2). After a small undulation correction for the system size consisting of 288 lipids, results were compared to experimental data. The best, and excellent, fit to neutron scattering data occurs at an interpolated A(N) = 66.6 Å(2) and the best, but not as good, fit to the more extensive X-ray scattering data occurs at A(X) = 68.7 Å(2). The distance ΔDB-H between the Gibbs dividing surface for water and the peak in the electron density profile agrees with scattering experiments. The calculated area compressibility K(A) = 277 ± 10 mN/m is in excellent agreement with the micromechanical experiment. The volume per lipid V(L) is smaller than volume experiments which suggests a workaround that raises all the areas by about 1.5%. Although A(X) ≠ A(N) ≠ A(NPT), this force field obtains acceptable agreement with experiment for A(L) = 67.5 Å(2) (68.5 Å(2) in the workaround), which we suggest is a better DOPC result from 43A1-S3 simulations than its value from the tensionless NPT simulation. However, nonsimulation modeling obtains better simultaneous fits to both kinds of scattering data, which suggests that the force fields can still be improved.


Chemistry and Physics of Lipids | 2014

X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes.

Alexander L. Boscia; Bradley W. Treece; Dariush Mohammadyani; Judith Klein-Seetharaman; Anthony R. Braun; Tsjerk A. Wassenaar; Beate Klösgen; Stephanie Tristram-Nagle

Cardiolipins (CLs) are important biologically for their unique role in biomembranes that couple phosphorylation and electron transport like bacterial plasma membranes, chromatophores, chloroplasts and mitochondria. CLs are often tightly coupled to proteins involved in oxidative phosphorylation. The first step in understanding the interaction of CL with proteins is to obtain the pure CL structure, and the structure of mixtures of CL with other lipids. In this work we use a variety of techniques to characterize the fluid phase structure, material properties and thermodynamics of mixtures of dimyristoylphosphatidylcholine (DMPC) with tetramyristoylcardiolipin (TMCL), both with 14-carbon chains, at several mole percentages. X-ray diffuse scattering was used to determine structure, including bilayer thickness and area/lipid, the bending modulus, KC, and SXray, a measure of chain orientational order. Our results reveal that TMCL thickens DMPC bilayers at all mole percentages, with a total increase of ∼6 Å in pure TMCL, and increases AL from 64 Å(2) (DMPC at 35 °C) to 109 Å(2) (TMCL at 50 °C). KC increases by ∼50%, indicating that TMCL stiffens DMPC membranes. TMCL also orders DMPC chains by a factor of ∼2 for pure TMCL. Coarse grain molecular dynamics simulations confirm the experimental thickening of 2 Å for 20mol% TMCL and locate the TMCL headgroups near the glycerol-carbonyl region of DMPC; i.e., they are sequestered below the DMPC phosphocholine headgroup. Our results suggest that TMCL plays a role similar to cholesterol in that it thickens and stiffens DMPC membranes, orders chains, and is positioned under the umbrella of the PC headgroup. CL may be necessary for hydrophobic matching to inner mitochondrial membrane proteins. Differential scanning calorimetry, SXray and CGMD simulations all suggest that TMCL does not form domains within the DMPC bilayers. We also determined the gel phase structure of TMCL, which surprisingly displays diffuse X-ray scattering, like a fluid phase lipid. AL=40.8 Å(2) for the ½TMCL gel phase, smaller than the DMPC gel phase with AL=47.2 Å(2), but similar to AL of DLPE=41 Å(2), consistent with untilted chains in gel phase TMCL.


Biochimica et Biophysica Acta | 2016

Membrane remodeling and mechanics: Experiments and simulations of α-Synuclein ☆

Ana West; Benjamin E. Brummel; Anthony R. Braun; Elizabeth Rhoades; Jonathan N. Sachs

We review experimental and simulation approaches that have been used to determine curvature generation and remodeling of lipid bilayers by membrane-bending proteins. Particular emphasis is placed on the complementary approaches used to study α-Synuclein (αSyn), a major protein involved in Parkinsons disease (PD). Recent cellular and biophysical experiments have shown that the protein 1) deforms the native structure of mitochondrial and model membranes; and 2) inhibits vesicular fusion. Todays advanced experimental and computational technology has made it possible to quantify these protein-induced changes in membrane shape and material properties. Collectively, experiments, theory and multi-scale simulation techniques have established the key physical determinants of membrane remodeling and rigidity: protein binding energy, protein partition depth, protein density, and membrane tension. Despite the exciting and significant progress made in recent years in these areas, challenges remain in connecting biophysical insights to the cellular processes that lead to disease. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Biophysical Journal | 2015

α-Synuclein Reduces Tension and Increases Undulations in Simulations of Small Unilamellar Vesicles

Anthony R. Braun; Jonathan N. Sachs

Using coarse-grained molecular dynamics simulations we have explored the effect of α-Synuclein (αSyn) on the structural and mechanical properties of small unilamellar vesicles in the fluid-phase. The study is motivated by observations that a high density of membrane-bound αSyn inhibits the fusion of synthetic small unilamellar vesicles. By combining three-dimensional pressure tensor calculations with our recently developed spherical harmonics fluctuation analysis approach, we show a reduction in membrane surface tension and increased membrane undulations when αSyn is bound to the vesicles outer leaflet at a 200:1 L/P. The protein effects these changes by decreasing the negative pressure in the headgroup region of the outer leaflet and increasing the positive pressure throughout the hydrocarbon core.

Collaboration


Dive into the Anthony R. Braun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Rhoades

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Nagle

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge