Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Rhoades is active.

Publication


Featured researches published by Elizabeth Rhoades.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Watching proteins fold one molecule at a time

Elizabeth Rhoades; Eugene Gussakovsky; Gilad Haran

Recent theoretical work suggests that protein folding involves an ensemble of pathways on a rugged energy landscape. We provide direct evidence for heterogeneous folding pathways from single-molecule studies, facilitated by a recently developed immobilization technique. Individual fluorophore-labeled molecules of the protein adenylate kinase were trapped within surface-tethered lipid vesicles, thereby allowing spatial restriction without inducing any spurious interactions with the environment, which often occur when using direct surface-linking techniques. The conformational fluctuations of these protein molecules, prepared at the thermodynamic midtransition point, were studied by using fluorescence resonance energy transfer between two specifically attached labels. Folding and unfolding transitions appeared in experimental time traces as correlated steps in donor and acceptor fluorescence intensity. The size of the steps, in fluorescence resonance energy transfer efficiency units, shows a very broad distribution. This distribution peaks at a relatively low value, indicating a preference for small-step motion on the energy landscape. The time scale of the transitions is also distributed, and although many transitions are too fast to be time-resolved here, the slowest ones may take >1 sec to complete. These extremely slow changes during the folding of single molecules highlight the possible importance of correlated, non-Markovian conformational dynamics.


Biophysical Journal | 2010

Effects of Curvature and Composition on α-Synuclein Binding to Lipid Vesicles

Elizabeth R. Middleton; Elizabeth Rhoades

Parkinsons disease is characterized by the presence of intracellular aggregates composed primarily of the neuronal protein α-synuclein (αS). Interactions between αS and various cellular membranes are thought to be important to its native function as well as relevant to its role in disease. We use fluorescence correlation spectroscopy to investigate binding of αS to lipid vesicles as a function of the lipid composition and membrane curvature. We determine how these parameters affect the molar partition coefficient of αS, providing a quantitative measure of the binding energy, and calculate the number of lipids required to bind a single protein. Specific anionic lipids have a large effect on the free energy of binding. Lipid chain saturation influences the binding interaction to a lesser extent, with larger partition coefficients measured for gel-phase vesicles than for fluid-phase vesicles, even in the absence of anionic lipid components. Although we observe variability in the binding of the mutant proteins, differences in the free energies of partitioning are less dramatic than with varied lipid compositions. Vesicle curvature has a strong effect on the binding affinity, with a >15-fold increase in affinity for small unilamellar vesicles over large unilamellar vesicles, suggesting that αS may be a curvature-sensing protein. Our findings provide insight into how physical properties of the membrane may modulate interactions of αS with cellular membranes.


Biochemistry | 2009

α-Synuclein Binds Large Unilamellar Vesicles as an Extended Helix†

Adam J. Trexler; Elizabeth Rhoades

Interactions between the synaptic protein alpha-Synuclein and cellular membranes may be relevant both to its native function as well as its role in Parkinsons disease. We use single molecule Forster resonance energy transfer to probe the structure of alpha-Synuclein bound to detergent micelles and lipid vesicles. We find evidence that it forms a bent-helix when bound to highly curved detergent micelles, whereas it binds more physiological 100 nm diameter lipid vesicles as an elongated helix. Our results highlight the influence of membrane curvature in determining alpha-Synuclein conformation, which may be important for both its normal and disease-associated functions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity

Elizabeth Rhoades; Andrew D. Miranker

Amyloid fiber formation is correlated with pathology in many diseases, including Alzheimer’s, Parkinson’s, and type II diabetes. Although β-sheet–rich fibrillar protein deposits define this class of disorder, increasing evidence points toward small oligomeric species as being responsible for cell dysfunction and death. The molecular mechanism by which this occurs is unknown, but likely involves the interaction of these species with biological membranes, with a subsequent loss of integrity. Here, we investigate islet amyloid polypeptide, which is implicated in the loss of insulin-secreting cells in type II diabetics. We report the discovery of oligomeric species that arise through stochastic nucleation on membranes and result in disruption of the lipid bilayer. These species are stable, result in all-or-none leakage, and represent a definable protein/lipid phase that equilibrates over time. We characterize the reaction pathway of assembly through the use of an experimental design that includes both ensemble and single-particle evaluations. Complexity in the reaction pathway could not be satisfied using a two-state description of membrane-bound monomer and oligomeric species. We therefore put forward a three-state kinetic framework, one of which we conjecture represents a non-amyloid, non-β-sheet intermediate previously shown to be a candidate therapeutic target.


Protein Science | 2012

N-terminal acetylation is critical for forming α-helical oligomer of α-synuclein

Adam J. Trexler; Elizabeth Rhoades

The aggregation of the protein α‐synuclein (AS) is critical to the pathogenesis of Parkinsons disease. Although generally described as an unstructured monomer, recent evidence suggests that the native form of AS may be an α‐helical tetramer which resists aggregation. Here, we show that N‐terminal acetylation in combination with a mild purification protocol results in an oligomeric form of AS with partial α‐helical structure. N‐terminal acetylation of AS could have important implications for both the native and pathological structures and functions of AS. Through our demonstration of a recombinant expression system, our results represent an important step toward biochemical and biophysical characterization of this potentially important form of AS.


Journal of Immunology | 2009

Mycobacterium abscessus Glycopeptidolipids Mask Underlying Cell Wall Phosphatidyl-myo-Inositol Mannosides Blocking Induction of Human Macrophage TNF-α by Preventing Interaction with TLR2

Elizabeth Rhoades; Angela S. Archambault; Rebecca Greendyke; Fong-Fu Hsu; Cassandra Streeter; Thomas F. Byrd

Mycobacterium abscessus causes disease in patients with structural abnormalities of the lung, and it is an emerging pathogen in patients with cystic fibrosis. Colonization of the airways by nontuberculous mycobacteria is a harbinger of invasive lung disease. Colonization is facilitated by biofilm formation, with M. abscessus glycopeptidolipids playing an important role. M. abscessus can transition between a noninvasive, biofilm-forming, smooth colony phenotype that expresses glycopeptidolipid, and an invasive rough colony phenotype that expresses minimal amounts of glycopeptidolipid and is unable to form biofilms. The ability of this pathogen to transition between these phenotypes may have particular relevance to lung infection in cystic fibrosis patients since the altered pulmonary physiology of these patients makes them particularly susceptible to colonization by biofilm-forming bacteria. In this study we demonstrate that rough variants of M. abscessus stimulate the human macrophage innate immune response through TLR2, while smooth variants do not. Temperature-dependent loss or physical removal of glycopeptidolipid from the cell wall of one of the smooth variants leads to TLR2 stimulation. This response is stimulated in part through phosphatidyl-myo-inositol mannosides that are present in the cell wall of both rough and smooth variants. Mannose-binding lectins bind to rough variants, but lectin binding to an isogenic smooth variant is markedly reduced. This suggests that glycopeptidolipid in the outermost portion of the M. abscessus cell wall masks underlying cell wall lipids involved in stimulating the innate immune response, thereby facilitating colonization. Conversely spontaneous “unmasking” of cell wall lipids may promote airway inflammation.


Biophysical Journal | 2008

Using Fluorescence Correlation Spectroscopy to Study Conformational Changes in Denatured Proteins

Eilon Sherman; Anna Itkin; Yosef Yehuda Kuttner; Elizabeth Rhoades; Dan Amir; Elisha Haas; Gilad Haran

Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.


Journal of the American Chemical Society | 2011

Allostery in a Disordered Protein: Oxidative Modifications to α-Synuclein Act Distally To Regulate Membrane Binding

Eva Sevcsik; Adam J. Trexler; Joanna M. Dunn; Elizabeth Rhoades

Both oxidative stress and aggregation of the protein α-synuclein (aS) have been implicated as key factors in the etiology of Parkinsons disease. Specifically, oxidative modifications to aS disrupt its binding to lipid membranes, an interaction considered critical to its native function. Here we seek to provide a mechanistic explanation for this phenomenon by investigating the effects of oxidative nitration of tyrosine residues on the structure of aS and its interaction with lipid membranes. Membrane binding is mediated by the first ∼95 residues of aS. We find that nitration of the single tyrosine (Y39) in this domain disrupts binding due to electrostatic repulsion. Moreover, we observe that nitration of the three tyrosines (Y125/133/136) in the C-terminal domain is equally effective in perturbing binding, an intriguing result given that the C-terminus is not thought to interact directly with the lipid bilayer. Our investigations show that tyrosine nitration results in a change of the conformational states populated by aS in solution, with the most prominent changes occurring in the C-terminal region. These results lead us to suggest that nitration of Y125/133/136 reduces the membrane-binding affinity of aS through allosteric coupling by altering the ensemble of conformational states and depopulating those capable of membrane binding. While allostery is a well-established concept for structured proteins, it has only recently been discussed in the context of disordered proteins. We propose that allosteric regulation through modification of specific residues in, or ligand binding to, the C-terminus may even be a general mechanism for modulating aS function.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dynamics of equilibrium structural fluctuations of apomyoglobin measured by fluorescence correlation spectroscopy

Huimin Chen; Elizabeth Rhoades; James S. Butler; Stewart N. Loh; Watt W. Webb

The spectra of equilibrium chain conformation fluctuations of apomyoglobin (apoMb) as a function of folding, from the acid-denatured state at pH 2.6 through the stable molten globule state pH ≈ 4.1 to the folded state at pH 6.3, are reported, as measured by fluorescence correlation spectroscopy. The conformational fluctuations, which are detected by quenching of an N-terminal fluorescent label by contact with various amino acids, can be represented by superpositions of decaying exponentials with time scales ranging from ≈3 to ≈200 μs. Both the time scales and amplitudes of the fluctuations increase with the degree of acid denaturation, with principal shifts associated with the transition across the molten globule state. Measurements of the diffusion of apoMb confirm theoretical values showing a ≈40% increase in the hydrodynamic radius upon acid denaturation. This study uses the model protein apoMb to illustrate the complex scope of folding associated structural dynamics.


Journal of the American Chemical Society | 2012

Identification of an aggregation-prone structure of tau.

Shana Elbaum-Garfinkle; Elizabeth Rhoades

The aggregation and deposition of normally soluble proteins is the hallmark of several devastating neurodegenerative disorders. For proteins such as tau in Alzheimers disease and α-synuclein in Parkinsons disease, aggregation involves a transition from an intrinsically disordered monomer to a highly structured fiber. While understanding the role of these proteins in neurodegeneration requires elucidation of the structural basis of self-association, the conformational heterogeneity of disordered proteins makes their structural characterization inherently challenging. Here we use single molecule Förster resonance energy transfer to measure the conformational ensemble of tau in the absence and presence of heparin to identify critical conformational changes relevant to the initiation of aggregation. We find that different domains of tau display distinct conformational properties that are strongly correlated with their degree of disorder and that may relate to their roles in aggregation. Moreover, we observe that heparin binding induces a distinct two-state structural transition in tau characterized by a loss of long-range contacts and a concomitant compaction of the microtubule binding domain. Our results describe a conformational intermediate of tau that precedes the formation of aggregates and could serve as a target for tau-focused therapeutics.

Collaboration


Dive into the Elizabeth Rhoades's collaboration.

Top Co-Authors

Avatar

Abhinav Nath

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge