Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony S. Danko is active.

Publication


Featured researches published by Anthony S. Danko.


Environmental Science and Pollution Research | 2015

Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change

João M. Jesus; Anthony S. Danko; António Fiúza; Maria-Teresa Borges

Soil salinization affects 1–10 billion ha worldwide, threatening the agricultural production needed to feed the ever increasing world population. Phytoremediation may be a cost-effective option for the remediation of these soils. This review analyzes the viability of using phytoremediation for salt-affected soils and explores the remedial mechanisms involved. In addition, it specifically addresses the debate over plant indirect (via soil cation exchange enhancement) or direct (via uptake) role in salt remediation. Analysis of experimental data for electrical conductivity (ECe) + sodium adsorption ratio (SAR) reduction and plant salt uptake showed a similar removal efficiency between salt phytoremediation and other treatment options, with the added potential for phytoextraction under non-leaching conditions. A focus is also given on recent studies that indicate potential pathways for increased salt phytoextraction, co-treatment with other contaminants, and phytoremediation applicability for salt flow control. Finally, this work also details the predicted effects of climate change on soil salinization and on treatment options. The synergetic effects of extreme climate events and salinization are a challenging obstacle for future phytoremediation applications, which will require additional and multi-disciplinary research efforts.


Journal of Hazardous Materials | 2015

In situ aerobic cometabolism of chlorinated solvents: a review.

Dario Frascari; Giulio Zanaroli; Anthony S. Danko

The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.


Bioresource Technology | 2015

Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides-enriched microbial culture.

Patrícia Leitão; Simona Rossetti; Henri P.A. Nouws; Anthony S. Danko; Mauro Majone; Federico Aulenta

The aim of this study was to verify the possibility to use a polarized graphite electrode as an electron donor for the reductive dechlorination of 1,2-dichloroethane, an ubiquitous groundwater contaminant. The rate of 1,2-DCA dechlorination almost linearly increased by decreasing the set cathode potential over a broad range of set cathode potentials (i.e., from -300 mV to -900 mV vs. the standard hydrogen electrode). This process was primarily dependent on electrolytic H2 generation. On the other hand, reductive dechlorination proceeded (although quite slowly) with a very high Coulombic efficiency (near 70%) at a set cathode potential of -300 mV, where no H2 production occurred. Under this condition, reductive dechlorination was likely driven by direct electron uptake from the surface of the polarized electrode. Taken as a whole, this study further extends the range of chlorinated contaminants which can be treated with bioelectrochemical systems.


Journal of Hazardous Materials | 2016

Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

João M. Jesus; Dario Frascari; Tatiana A. Pozdniakova; Anthony S. Danko

This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.


Bioresource Technology | 2016

Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1,2-dichloroethane to ethene

Patrícia Leitão; Simona Rossetti; Anthony S. Danko; Henri P.A. Nouws; Federico Aulenta

The application of bioelectrochemical systems (BES) for the treatment of chloroethanes has been so far limited, in spite of the high frequency that these contaminants are detected at contaminated sites. This work studied the biodegradation of 1,2-dichloroethane (1,2-DCA) in a lab-scale BES, inoculated with a municipal activated sludge and operated under a range of conditions, spanning from oxidative to reductive, both in the presence and in the absence of the humic acid analogue anthraquinone-2,6-disulfonate (AQDS) as a redox mediator. The results showed stable dechlorination of 1,2-DCA to ethene (up to 65±5μmol/Ld), when the BES was operated at a set potential of -300mV vs. SHE, in the presence of AQDS. Sustained filled-and-draw operation resulted in the enrichment of Dehalococcoides mccartyi. The results of this work provide new insights into the applicability of BES for groundwater remediation and the potential interaction between biogeochemistry and 1,2-DCA in humics-rich contaminated aquifers.


Science of The Total Environment | 2017

Role of three different plants on simultaneous salt and nutrient reduction from saline synthetic wastewater in lab-scale constructed wetlands.

João M. Jesus; A.C. Cassoni; Anthony S. Danko; António Fiúza; Maria-Teresa Borges

Constructed Wetlands (CWs) can be a valuable technology to treat high salinity wastewaters but it is not known their potential for removal of both nutrients and salt, and the type of plants to use. This study evaluated the effect of three plants on salt reduction and simultaneous nutrient removal in CWs microcosms with expanded clay and in hydroponic conditions. Initial values of the synthetic wastewater tested were EC=15dSm-1, SAR=151; NH4+-N=24mgL-1; PO43--P=30mgL-1 and NO3--N=34mgL-1. With expanded clay CW removal efficiency for NH4+-N was 21, 88 and 85%, while for NO3--N, it was 4, 56 and 68% for Spartina maritima, Juncus maritimus and Arundo donax, respectively. PO43--P was adsorbed completely in the expanded clay. However, in hydroponic system, removal efficiencies for NH4+-N were 53 and 50%, while PO43--P removal was 89 and -14% for Spartina maritima and Juncus maritimus, respectively. Nutrient removal in planted microcosms was statistically higher than unplanted controls for NH4+-N and PO43--P. However, salt removal was apparent in the hydroponic system only after 23days of HRT, despite clear salt excretion visible in both Spartina maritima and Juncus maritimus. This study demonstrates the potential of two halophytic plants for saline wastewater treatment. However, salt removal in such a scenario could not be well documented and might prove to be impractical in future work.


Environmental Science and Pollution Research | 2017

Extensive review of shale gas environmental impacts from scientific literature (2010–2015)

Daniele Costa; João M. Jesus; David A. Castelo Branco; Anthony S. Danko; António Fiúza

Extensive reviews and meta-analyses are essential to summarize emerging developments in a specific field and offering information on the current trends in the scientific literature. Shale gas exploration and exploitation has been extensively debated in literature, but a comprehensive review of recent studies on the environmental impacts has yet to be carried out. Therefore, the goal of this article is to systematically examine scientific articles published between 2010 and 2015 and identify recent advances and existing data gaps. The examined articles were classified into six main categories (water resources, atmospheric emissions, land use, induced seismicity, occupational and public health and safety, and other impacts). These categories are analyzed separately to identify specific challenges, possibly existing consensus and data gaps yet remained in the literature.


New Biotechnology | 2012

Efficacy of pentane, toluene, and benzene to support aerobic cometabolism of ethylene dibromide

Anthony S. Danko; Patrícia O. Leitão; Matthew F. Verce; David L. Freedman

The ability of pentane, benzene, and toluene to support aerobic cometabolism of ethylene dibromide (1,2-dibromoethane, EDB) was evaluated. A pentane enrichment culture cometabolized EDB, with a transformation capacity of 0.35 μmol EDB/mg biomass (66.2 μg EDB/mg biomass) in the absence of growth substrate. It also cometabolized EDB while actively growing on pentane. However, enrichment cultures grown on benzene or toluene could not cometabolize EDB, with or without their respective growth substrates.


Bioresource Technology | 2016

Removal of metal and organic pollutants from wastewater by a sequential selective technique

M. Cobas; Anthony S. Danko; Marta Pazos; M.A. Sanromán

In this study the application of a sequential selective system that combined biosorption with biodegradation was evaluated as a feasible process for the removal of Cr(VI) and m-cresol from effluents. Cr(VI) biosorption on pretreated chestnut shells showed 100% metal removal and modelling efforts demonstrated that the pseudo-second order kinetic model and Langmuir isotherm fit well the process behaviour. Thus, the treated stream was an appropriate environment for the biodegradation of m-cresol using a laccase-producer fungus, Phlebia radiata. Two bioreactor configurations, rotating drum and modified-airlift, were studied using the fungus grown on chestnut shells, which act as support-substrate as well as oxidative enzyme inductor increasing the laccase activity up to 1000UL(-1). The best bioreactor, rotating drum, reached 100% removal in 7days. Finally, the best configuration for the sequential selective system was modelled operating in continuous mode by the breakthrough curves generated using FASTv2.0 and the design bioreactor flow model.


international conference on the european energy market | 2017

Price volatility across the Atlantic: The US and the European natural gas markets

Daniele Costa; Rafael Garaffa; David A. Castelo Branco; Anthony S. Danko; António Fiúza

Price volatility in the natural gas markets of the United States of America and the European Union have been the subject of several studies in recent years as these markets experienced important changes. The purpose of this study is to address and discuss market factors that have influenced price behavior. For this, the annualized monthly volatility for the “Henry Hub” (US Market) and the “London Natural Gas Index” (European Market) were calculated based on daily natural gas spot prices, from 2003 to 2014. The results show the different price behaviors and allow the comparison of these two markets.

Collaboration


Dive into the Anthony S. Danko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henri P.A. Nouws

Instituto Superior de Engenharia do Porto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Castelo Branco

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge