Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana M. Dias is active.

Publication


Featured researches published by Joana M. Dias.


Journal of Hazardous Materials | 2011

Activated carbon modifications to enhance its water treatment applications. An overview.

J. Rivera-Utrilla; M. Sánchez-Polo; V. Gómez-Serrano; Pedro M. Álvarez; M.C.M. Alvim-Ferraz; Joana M. Dias

The main objective of this study was to list and compare the advantages and disadvantages of different methodologies to modify the surface of activated carbons (ACs) for their application as adsorbents to remove organic and inorganic pollutants from aqueous phase. These methodologies have been categorized into four broad groups: oxidation, sulfuration, ammonification, and coordinated ligand anchorage. Numerous investigations into the removal of metals from water have modified carbon surfaces to increase their content of acidic surface functional groups by using H(2)O(2), O(3) and HNO(3). Because these treatments can reduce the AC surface area, researchers are seeking alternative methods to modify and/or create surface functional groups without the undesirable effect of pore blockage. The nitrogenation or sulfuration of the AC surface can increase its basicity favoring the adsorption of organic compounds. The introduction of nitrogen or sulfur complexes on the carbon surface increases the surface polarity and, therefore, the specific interaction with polar pollutants. Different coordinated ligands have also been used to modify ACs, showing that coordinated ligand anchorage on the AC surface modifies its textural and chemical properties, but research to date has largely focused on the use of these modified materials to remove heavy metals from water by complexes formation.


Bioresource Technology | 2009

Production of biodiesel from acid waste lard

Joana M. Dias; M.C.M. Alvim-Ferraz; M. Almeida

The objective of the present work was: (i) to enable biodiesel production from acid waste lard; (ii) to study the esterification reaction as possible pre-treatment at different temperatures, catalyst amount and reaction times; (iii) to evaluate biodiesel quality according to EN 14214 after basic transesterification of the pre-treated fat; and (iv) to predict the impact of using such waste as raw material in mixture with soybean oil. Temperature and catalyst amount were the most important reaction conditions which mostly affected biodiesel quality, namely viscosity and purity. The selected pre-treatment conditions were 65 degrees C, 2.0 wt% H(2)SO(4) and 5 h, which allowed obtaining a product with a viscosity of 4.81 mm(2) s(-1) and a purity of 99.6 wt%. The proposed pre-treatment was effective to enable acid wastes as single raw materials for biodiesel production with acceptable quality; however, low yields were obtained (65 wt%). Alkali transesterification of a mixture of waste lard and soybean oil resulted in a product with a purity of 99.8 wt% and a yield of 77.8 wt%, showing that blending might be an interesting alternative to recycle such wastes. Also, because in addition to using conventional and relatively economical processes, some biodiesel properties depending on the raw material composition (such as the iodine value) might even be improved.


Veterinary Research | 2013

Mucosal and systemic T cell response in mice intragastrically infected with Neospora caninum tachyzoites

Alexandra Correia; Pedro Ferreirinha; Amanda A Costa; Joana M. Dias; Joana Melo; Rita Costa; Adília Ribeiro; Augusto Faustino; Luzia Teixeira; A. Rocha; Manuel Vilanova

The murine model has been widely used to study the host immune response to Neospora caninum. However, in most studies, the intraperitoneal route was preferentially used to establish infection. Here, C57BL/6 mice were infected with N. caninum tachyzoites by the intragastric route, as it more closely resembles the natural route of infection through the gastrointestinal tract. The elicited T-cell mediated immune response was evaluated in the intestinal epithelium and mesenteric lymph nodes (MLN). Early upon the parasitic challenge, IL-12 production by conventional and plasmacytoid dendritic cells was increased in MLN. Accordingly, increased proportions and numbers of TCRαβ+CD8+IFN-γ+ lymphocytes were detected, not only in the intestinal epithelium and MLN, but also in the spleen of the infected mice. In this organ, IFN-γ-producing TCRαβ+CD4+ T cells were also found to increase in the infected mice, however later than CD8+ T cells. Interestingly, splenic and MLN CD4+CD25+ T cells sorted from infected mice presented a suppressive activity on in vitro T cell proliferation and cytokine production above that of control counterparts. These results altogether indicate that, by producing IFN-γ, TCRαβ+CD8+ cells contribute for local and systemic host protection in the earliest days upon infection established through the gastrointestinal tract. Nevertheless, they also provide substantial evidence for a parasite-driven reinforcement of T regulatory cell function which may contribute for parasite persistence in the host and might represent an additional barrier to overcome towards effective vaccination.


Water Air and Soil Pollution | 2014

Influence of the Anaerobic Biodegradation of Different Types of Biodiesel on the Natural Attenuation of Benzene

J. M. Borges; Joana M. Dias; A. S. Danko

In the present research work, different types of biodiesel were produced by a homogeneous alkali transesterification reaction using soybean oil, pork lard, and castor bean oil as raw materials, to evaluate how their different compositions may affect the biodegradability, namely, in the presence of benzene. Biodiesel was characterized according to the European standard EN 14214. The anaerobic biodegradation of the different types of biodiesel was examined as well as its influence on the biodegradation of benzene. Analyses were performed to determine the volume of methane (directly related to the anaerobic biodegradation of biodiesel), the concentration of benzene over time, and the production of organic acids. The results showed methane production resulting from the anaerobic degradation of all biodiesel types. The differences between the degradation behavior of each fuel were negligible, contrary to what was expected; however, the amount of methane produced was low due to nutrient limitations. This fact was confirmed by the organic acid analysis as well as by the addition of new media. Anaerobic benzene biodegradation was found to be negatively impacted by the presence of all biodiesel types on average; therefore, the results of this study may impact management of sites that contain biodiesel and fuel hydrocarbon contamination.


Immunology | 2014

Protective effect of intranasal immunization with Neospora caninum membrane antigens against murine neosporosis established through the gastrointestinal tract

Pedro Ferreirinha; Joana M. Dias; Alexandra Correia; Begoña Pérez-Cabezas; Carlos Santos; Luzia Teixeira; Adília Ribeiro; A. Rocha; Manuel Vilanova

Neospora caninum is an Apicomplexa parasite that in the last two decades was acknowledged as the main pathogenic agent responsible for economic losses in the cattle industry. In the present study, the effectiveness of intranasal immunization with N. caninum membrane antigens plus CpG adjuvant was assessed in a murine model of intragastrically established neosporosis. Immunized mice presented a lower parasitic burden in the brain on infection with 5 × 107 tachyzoites, showing that significant protection was achieved by this immunization strategy. Intestinal IgA antibodies raised by immunization markedly agglutinated live N. caninum tachyzoites whereas previous opsonization with IgG antibodies purified from immunized mice sera reduced parasite survival within macrophage cells. Although an IgG1 : IgG2a ratio < 1 was detected in the immunized mice before and after infection, indicative of a predominant T helper type 1 immune response, no increased production of interferon‐γ was detected in the spleen or mesenteric lymph nodes of the immunized mice. Altogether, these results show that mucosal immunization with N. caninum membrane proteins plus CpG adjuvant protect against intragastrically established neosporosis and indicate that parasite‐specific mucosal and circulating antibodies have a protective role against this parasitic infection.


Journal of Environmental Management | 2018

Physical and thermal processing of Waste Printed Circuit Boards aiming for the recovery of gold and copper

E. Ventura; A. Futuro; Sílvia C. Pinho; M. Almeida; Joana M. Dias

The recovery of electronic waste to obtain secondary raw materials is a subject of high relevance in the context of circular economy. Accordingly, the present work relies on the evaluation of mining separation/concentration techniques (comminution, size screening, magnetic separation and gravity concentration) alone as well as combined with thermal pre-treatment to recover gold and copper from Waste Printed Circuit Boards. For that purpose, Waste Printed Circuit Boards were subjected to physical processing (comminution, size screening in 6 classes from <0.425 mm to > 6.70 mm, magnetic separation and gravity concentration) alone and combined with thermal treatment (200-500 °C), aiming the recovery of gold and copper. Mixed motherboards and graphic cards (Lot 1 and 3) and highly rich components (connectors separated from memory cards, Lot 2) were analyzed. Gold and copper concentrations were determined before and after treatment. Before treatment, concentrations from 0.01 to 0.6 % wt. and from 9 to 20 % wt. were found for gold and copper respectively. The highest concentrations were observed in the size fractions between 0.425 and 1.70 mm. The highest copper concentration was around 35 % wt. (class 0.425-0.85 mm) and when analyzing memory card connectors alone, gold concentrations reached almost 2% in the same class, reflecting the interest of separating such components. The physical treatment alone was more effective for Lot 1/3, compared to Lot 2, allowing recoveries of 67 % wt. and 87 % wt. for gold and copper respectively, mostly due to differences in particles size and shape. The thermal treatment showed unperceptive influence on gold concentration but significant effect for copper concentration, mostly attributed to the size of the copper particles. Concentrations increased in a factor of around 10 when the thermal treatment was performed at 300 °C for the larger particles (1.70-6.70 mm); the best results were obtained at 400 °C for the other sizes, when the highest rate of thermal decomposition of the material occurred.


Journal of Environmental Management | 2007

Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review

Joana M. Dias; M.C.M. Alvim-Ferraz; M. Almeida; J. Rivera-Utrilla; M. Sánchez-Polo


Fuel | 2008

Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality

Joana M. Dias; M.C.M. Alvim-Ferraz; M. Almeida


Energy | 2013

Biodiesel production from raw castor oil

Joana M. Dias; J.M. Araújo; J.F. Costa; M.C.M. Alvim-Ferraz; M. Almeida


Energy & Fuels | 2008

Mixtures of Vegetable Oils and Animal Fat for Biodiesel Production: Influence on Product Composition and Quality

Joana M. Dias; M.C.M. Alvim-Ferraz; M. Almeida

Collaboration


Dive into the Joana M. Dias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adília Ribeiro

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge