Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Seibert is active.

Publication


Featured researches published by Anthony Seibert.


Journal of Clinical Investigation | 2009

Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

Kimber L. Stanhope; Jean-Marc Schwarz; Nancy L. Keim; Steven C. Griffen; Andrew A. Bremer; James L. Graham; Bonnie Hatcher; Chad L. Cox; Artem Dyachenko; Wei Zhang; John P. McGahan; Anthony Seibert; Ronald M. Krauss; Sally Chiu; Ernst J. Schaefer; Masumi Ai; Seiko Otokozawa; Katsuyuki Nakajima; Carine Beysen; Marc K. Hellerstein; Lars Berglund; Peter J. Havel

Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.


Radiology | 2015

Radiation doses in consecutive ct examinations from five university of California medical centers 1

Rebecca Smith-Bindman; Michelle Moghadassi; Nicole Wilson; Thomas R. Nelson; John M. Boone; Christopher H. Cagnon; Robert G. Gould; David J. Hall; Mayil Krishnam; Ramit Lamba; Michael F. McNitt-Gray; Anthony Seibert; Diana L. Miglioretti

PURPOSE To summarize data on computed tomographic (CT) radiation doses collected from consecutive CT examinations performed at 12 facilities that can contribute to the creation of reference levels. MATERIALS AND METHODS The study was approved by the institutional review boards of the collaborating institutions and was compliant with HIPAA. Radiation dose metrics were prospectively and electronically collected from 199 656 consecutive CT examinations in 83 181 adults and 3871 consecutive CT examinations in 2609 children at the five University of California medical centers during 2013. The median volume CT dose index (CTDIvol), dose-length product (DLP), and effective dose, along with the interquartile range (IQR), were calculated separately for adults and children and stratified according to anatomic region. Distributions for DLP and effective dose are reported for single-phase examinations, multiphase examinations, and all examinations. RESULTS For adults, the median CTDIvol was 50 mGy (IQR, 37-62 mGy) for the head, 12 mGy (IQR, 7-17 mGy) for the chest, and 12 mGy (IQR, 8-17 mGy) for the abdomen. The median DLPs for single-phase, multiphase, and all examinations, respectively, were as follows: head, 880 mGy · cm (IQR, 640-1120 mGy · cm), 1550 mGy · cm (IQR, 1150-2130 mGy · cm), and 960 mGy · cm (IQR, 690-1300 mGy · cm); chest, 420 mGy · cm (IQR, 260-610 mGy · cm), 880 mGy · cm (IQR, 570-1430 mGy · cm), and 550 mGy · cm (IQR 320-830 mGy · cm); and abdomen, 580 mGy · cm (IQR, 360-860 mGy · cm), 1220 mGy · cm (IQR, 850-1790 mGy · cm), and 960 mGy · cm (IQR, 600-1460 mGy · cm). Median effective doses for single-phase, multiphase, and all examinations, respectively, were as follows: head, 2 mSv (IQR, 1-3 mSv), 4 mSv (IQR, 3-8 mSv), and 2 mSv (IQR, 2-3 mSv); chest, 9 mSv (IQR, 5-13 mSv), 18 mSv (IQR, 12-29 mSv), and 11 mSv (IQR, 6-18 mSv); and abdomen, 10 mSv (IQR, 6-16 mSv), 22 mSv (IQR, 15-32 mSv), and 17 mSv (IQR, 11-26 mSv). In general, values for children were approximately 50% those for adults in the head and 25% those for adults in the chest and abdomen. CONCLUSION These summary dose data provide a starting point for institutional evaluation of CT radiation doses.


international conference on digital mammography | 2006

Beam optimization for digital mammography – II

Mark B. Williams; Priya Raghunathan; Anthony Seibert; Alex L. C. Kwan; Joseph Y. Lo; Ehsan Samei; Laurie L. Fajardo; Andrew D. A. Maidment; Martin J. Yaffe; Aili K. Bloomquist

Optimization of acquisition technique factors (target, filter, and kVp) in digital mammography is required for maximization of the image SNR, while minimizing patient dose. The goal of this study is to compare, for each of the major commercially available FFDM systems, the effect of various technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study follows the approach of an earlier investigation [1], and includes measurements on recent versions of two of the FFDM systems discussed in that paper, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested are located at five different university test sites and include all FFDM systems that are currently FDA approved. Performance was assessed using 9 different phantom types (three compressed thicknesses, and three tissue composition types) using all available x-ray target and filter combinations. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose (MGD). This FOM has been used previously by others in mammographic beam optimization studies [2],[3]. For selected examples, data are presented describing the change in SNR, MGD, and FOM with changing kVp, as well as with changing target and/or filter type. For all nine breast types the target/filter/kVp combination resulting in the highest FOM value is presented. Our results suggest that in general, technique combinations resulting in higher energy beams resulted in higher FOM values, for nearly all breast types.


Physics in Medicine and Biology | 1998

Mammography spectrum measurement using an x-ray diffraction device

John M. Boone; Tong Yu; Anthony Seibert

The use of a diffraction spectrometer developed by Deslattes for the determination of mammographic kV is extended to the measurement of accurate, relative x-ray spectra. Raw x-ray spectra (photon fluence versus energy) are determined by passing an x-ray beam through a bent quartz diffraction crystal, and the diffracted x-rays are detected by an x-ray intensifying screen coupled to a charge coupled device. Two nonlinear correction procedures, one operating on the energy axis and the other operating on the fluence axis, are described and performed on measured x-ray spectra. The corrected x-ray spectra are compared against tabulated x-ray spectra measured under nearly identical conditions. Results indicate that the current device is capable of producing accurate relative x-ray spectral measurements in the energy region from 12 keV to 40 keV, which represents most of the screen-film mammography energy range. Twelve keV is the low-energy cut-off, due to the design geometry of the device. The spectrometer was also used to determine the energy-dependent x-ray mass attenuation coefficients for aluminium, with excellent results in the 12-30 keV range. Additional utility of the device for accurately determining the attenuation characteristics of various normal and abnormal breast tissues and phantom substitutes is anticipated.


Radiology | 2017

Predictors of CT radiation dose and their effect on patient care: A comprehensive analysis using automated data

Rebecca Smith-Bindman; Yifei Wang; Thomas R. Yellen-Nelson; Michelle Moghadassi; Nicole Wilson; Robert G. Gould; Anthony Seibert; John M. Boone; Mayil Krishnam; Ramit Lamba; David J. Hall; Diana L. Miglioretti

Purpose To determine patient, vendor, and institutional factors that influence computed tomography (CT) radiation dose. Materials and Methods The relevant institutional review boards approved this HIPAA-compliant study, with waiver of informed consent. Volume CT dose index (CTDIvol) and effective dose in 274 124 head, chest, and abdominal CT examinations performed in adult patients at 12 facilities in 2013 were collected prospectively. Patient, vendor, and institutional characteristics that could be used to predict (a) median dose by using linear regression after log transformation of doses and (b) high-dose examinations (top 25% of dose within anatomic strata) by using modified Poisson regression were assessed. Results There was wide variation in dose within and across medical centers. For chest CTDIvol, overall median dose across all institutions was 11 mGy, and institutional median dose was 7-16 mGy. Models including patient, vendor, and institutional factors were good for prediction of median doses (R2 = 0.31-0.61). The specific institution where the examination was performed (reflecting the specific protocols used) accounted for a moderate to large proportion of dose variation. For chest CTDIvol, unadjusted median CTDIvol was 16.5 mGy at one institution and 6.7 mGy at another (adjusted relative median dose, 2.6 mGy [95% confidence interval: 2.5, 2.7]). Several variables were important predictors that a patient would undergo high-dose CT. These included patient size, the specific institution where CT was performed, and the use of multiphase scanning. For example, while 49% of patients (21 411 of 43 696) who underwent multiphase abdominal CT had a high-dose examination, 8% of patients (4977 of 62 212) who underwent single-phase CT had a high-dose examination (adjusted relative risk, 6.20 [95% CI: 6.17, 6.23]). If all patients had been examined with single-phase CT, 69% (18 208 of 26 388) of high-dose examinations would have been eliminated. Patient size, institutional-specific protocols, and multiphase scanning were the most important predictors of dose (change in R2 = 8%-32%), followed by manufacturer and iterative reconstruction (change in R2, 0.2%-15.0%). Conclusion CT doses vary considerably within and across facilities. The primary factors that influenced dose variation were multiphase scanning and institutional protocol choices. It is unknown if the variation in these factors influenced diagnostic accuracy.


Pediatric Radiology | 2013

Optimizing bone surveys performed for suspected non-accidental trauma with attention to maximizing diagnostic yield while minimizing radiation exposure: utility of pelvic and lateral radiographs

Priyanka Jha; Rebecca Stein-Wexler; Kevin P. Coulter; Anthony Seibert; Chin Shang Li; Sandra L. Wootton-Gorges

BackgroundSkeletal surveys for non-accidental trauma (NAT) include lateral spinal and pelvic views, which have a significant radiation dose.ObjectiveTo determine whether pelvic and lateral spinal radiographs should routinely be performed during initial bone surveys for suspected NAT.Materials and methodsThe radiology database was queried for the period May 2005 to May 2011 using CPT codes for skeletal surveys for suspected NAT. Studies performed for skeletal dysplasia and follow-up surveys were excluded. Initial skeletal surveys were reviewed to identify fractures present, including those identified only on lateral spinal and/or pelvic radiographs. Clinical information and MR imaging was reviewed for the single patient with vertebral compression deformities.ResultsOf the 530 children, 223 (42.1%) had rib and extremity fractures suspicious for NAT. No fractures were identified solely on pelvic radiographs. Only one child (<0.2%) had vertebral compression deformities identified on a lateral spinal radiograph. This infant had rib and extremity fractures and was clinically paraplegic. MR imaging confirmed the vertebral body fractures.ConclusionSince no fractures were identified solely on pelvic radiographs and on lateral spinal radiographs in children without evidence of NAT, nor in nearly all with evidence of NAT, inclusion of these views in the initial evaluation of children for suspected NAT may not be warranted.


JAMA Internal Medicine | 2017

Optimizing Radiation Doses for Computed Tomography Across Institutions: Dose Auditing and Best Practices

Joshua Demb; Philip W. Chu; Thomas R. Nelson; David J. Hall; Anthony Seibert; Ramit Lamba; John M. Boone; Mayil Krishnam; Christopher H. Cagnon; Maryam Bostani; Robert G. Gould; Diana L. Miglioretti; Rebecca Smith-Bindman

Importance Radiation doses for computed tomography (CT) vary substantially across institutions. Objective To assess the impact of institutional-level audit and collaborative efforts to share best practices on CT radiation doses across 5 University of California (UC) medical centers. Design, Setting, and Participants In this before/after interventional study, we prospectively collected radiation dose metrics on all diagnostic CT examinations performed between October 1, 2013, and December 31, 2014, at 5 medical centers. Using data from January to March (baseline), we created audit reports detailing the distribution of radiation dose metrics for chest, abdomen, and head CT scans. In April, we shared reports with the medical centers and invited radiology professionals from the centers to a 1.5-day in-person meeting to review reports and share best practices. Main Outcomes and Measures We calculated changes in mean effective dose 12 weeks before and after the audits and meeting, excluding a 12-week implementation period when medical centers could make changes. We compared proportions of examinations exceeding previously published benchmarks at baseline and following the audit and meeting, and calculated changes in proportion of examinations exceeding benchmarks. Results Of 158 274 diagnostic CT scans performed in the study period, 29 594 CT scans were performed in the 3 months before and 32 839 CT scans were performed 12 to 24 weeks after the audit and meeting. Reductions in mean effective dose were considerable for chest and abdomen. Mean effective dose for chest CT decreased from 13.2 to 10.7 mSv (18.9% reduction; 95% CI, 18.0%-19.8%). Reductions at individual medical centers ranged from 3.8% to 23.5%. The mean effective dose for abdominal CT decreased from 20.0 to 15.0 mSv (25.0% reduction; 95% CI, 24.3%-25.8%). Reductions at individual medical centers ranged from 10.8% to 34.7%. The number of CT scans that had an effective dose measurement that exceeded benchmarks was reduced considerably by 48% and 54% for chest and abdomen, respectively. After the audit and meeting, head CT doses varied less, although some institutions increased and some decreased mean head CT doses and the proportion above benchmarks. Conclusions and Relevance Reviewing institutional doses and sharing dose-optimization best practices resulted in lower radiation doses for chest and abdominal CT and more consistent doses for head CT.


Abdominal Radiology | 2017

Renal cell carcinoma attenuation values on unenhanced CT: importance of multiple, small region-of-interest measurements

John P. McGahan; Kunal Sidhar; Ghaneh Fananapazir; Heather M. Early; Michael T. Corwin; Stuart G. Silverman; Anthony Seibert

ObjectiveSince it has been suggested that benign renal cysts can be diagnosed at unenhanced CT on the basis of homogeneity and attenuations of 20 HU or less, we determined the prevalence of renal cell carcinomas (RCCs) with these characteristics using two different methods of measuring attenuation.Materials and methodsAfter IRB approval, two radiologists obtained unenhanced attenuation values of 104 RCCs (mean size 5.6 cm) using a single, large region of interest (ROI), two-thirds the size of the mass. They were then determined if the masses appeared heterogeneous. Of RCCs measuring 20 HU or less, those which appeared homogeneous were re-measured with multiple (6 or more), small (0.6 cm2 or smaller) ROIs dispersed throughout the lesion. Masses with attenuations 20 HU or less were compared to those with masses with HU greater than 20 for any differences in demographic data.ResultsOf 104 RCCS, 24 RCC had HU less than 20 using a large ROI. Of these, 21 appeared heterogeneous and 3 appeared homogeneous. Using multiple small ROIs, these three RCCs revealed maximum attenuation values above 20 HU (Range: 26–32 HU). A greater portion of RCCs measuring 20 HU or less using a large ROI were clear cell sub-type. There were no other differences.ConclusionsRenal cell carcinoma can measure 20 HU or less at unenhanced CT when a single large ROI is used. While most appear heterogeneous, some may appear homogeneous, but will likely reveal attenuations greater than 20 HU when multiple, small ROIs are used. This knowledge may prevent some RCCs from being misdiagnosed as cysts on unenhanced CT.


Abdominal Imaging | 2015

Accuracy and radiation dose reduction of a limited abdominopelvic CT in the diagnosis of acute appendicitis

Michael T. Corwin; Melanie Chang; Ghaneh Fananapazir; Anthony Seibert; Ramit Lamba


Clinical Lung Cancer | 2005

Computer-Assisted Image Analysis of Bronchioloalveolar Carcinoma

Derick Lau; Anthony Seibert; David R. Gandara; Luko Laptalo; Este Geraghty; Christopher Coulon

Collaboration


Dive into the Anthony Seibert's collaboration.

Top Co-Authors

Avatar

John M. Boone

University of California

View shared research outputs
Top Co-Authors

Avatar

Ramit Lamba

University of California

View shared research outputs
Top Co-Authors

Avatar

David J. Hall

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayil Krishnam

Group Health Cooperative

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derick Lau

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge