Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher H. Cagnon is active.

Publication


Featured researches published by Christopher H. Cagnon.


Physics in Medicine and Biology | 2005

A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms

J DeMarco; Christopher H. Cagnon; Dianna D. Cody; Donna M. Stevens; Cynthia H. McCollough; J O'Daniel; Michael F. McNitt-Gray

The purpose of this work was to extend the verification of Monte Carlo based methods for estimating radiation dose in computed tomography (CT) exams beyond a single CT scanner to a multidetector CT (MDCT) scanner, and from cylindrical CTDI phantom measurements to both cylindrical and physical anthropomorphic phantoms. Both cylindrical and physical anthropomorphic phantoms were scanned on an MDCT under the specified conditions. A pencil ionization chamber was used to record exposure for the cylindrical phantom, while MOSFET (metal oxide semiconductor field effect transistor) detectors were used to record exposure at the surface of the anthropomorphic phantom. Reference measurements were made in air at isocentre using the pencil ionization chamber under the specified conditions. Detailed Monte Carlo models were developed for the MDCT scanner to describe the x-ray source (spectra, bowtie filter, etc) and geometry factors (distance from focal spot to isocentre, source movement due to axial or helical scanning, etc). Models for the cylindrical (CTDI) phantoms were available from the previous work. For the anthropomorphic phantom, CT image data were used to create a detailed voxelized model of the phantoms geometry. Anthropomorphic phantom material compositions were provided by the manufacturer. A simulation of the physical scan was performed using the mathematical models of the scanner, phantom and specified scan parameters. Tallies were recorded at specific voxel locations corresponding to the MOSFET physical measurements. Simulations of air scans were performed to obtain normalization factors to convert results to absolute dose values. For the CTDI body (32 cm) phantom, measurements and simulation results agreed to within 3.5% across all conditions. For the anthropomorphic phantom, measured surface dose values from a contiguous axial scan showed significant variation and ranged from 8 mGy/100 mAs to 16 mGy/100 mAs. Results from helical scans of overlapping pitch (0.9375) and extended pitch (1.375) were also obtained. Comparisons between the MOSFET measurements and the absolute dose value derived from the Monte Carlo simulations demonstrate agreement in terms of absolute dose values as well as the spatially varying characteristics. This work demonstrates the ability to extend models from a single detector scanner using cylindrical phantoms to an MDCT scanner using both cylindrical and anthropomorphic phantoms. Future work will be extended to voxelized patient models of different sizes and to other MDCT scanners.


Physics in Medicine and Biology | 2003

A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

G Jarry; J DeMarco; U Beifuss; Christopher H. Cagnon; Michael F. McNitt-Gray

The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values published by the UKs ImPACT group for a scan using an equivalent scanner, kVp, collimation, pitch and mAs. The CT source model was shown to calculate both a relative and absolute radiation dose distribution throughout the entire volume in a patient-specific matrix geometry. Results of initial testing are promising and application to patient models was shown to be feasible.


Radiology | 2008

Radiation dose to the fetus for pregnant patients undergoing multidetector CT imaging: Monte carlo simulations estimating fetal dose for a range of gestational age and patient size1

Erin Angel; Clinton V. Wellnitz; Mitchell M. Goodsitt; Nazanin Yaghmai; J DeMarco; Christopher H. Cagnon; James Sayre; Dianna D. Cody; Donna M. Stevens; Andrew N. Primak; Cynthia H. McCollough; Michael F. McNitt-Gray

PURPOSE To use Monte Carlo simulations of a current-technology multidetector computed tomographic (CT) scanner to investigate fetal radiation dose resulting from an abdominal and pelvic examination for a range of actual patient anatomies that include variation in gestational age and maternal size. MATERIALS AND METHODS Institutional review board approval was obtained for this HIPAA-compliant retrospective study. Twenty-four models of maternal and fetal anatomy were created from image data from pregnant patients who had previously undergone clinically indicated CT examination. Gestational age ranged from less than 5 weeks to 36 weeks. Simulated helical scans of the abdominal and pelvic region were performed, and a normalized dose (in milligrays per 100 mAs) was calculated for each fetus. Stepwise multiple linear regression was performed to analyze the correlation of dose with gestational age and anatomic measurements of maternal size and fetal location. Results were compared with several existing fetal dose estimation methods. RESULTS Normalized fetal dose estimates from the Monte Carlo simulations ranged from 7.3 to 14.3 mGy/100 mAs, with an average of 10.8 mGy/100 mAs. Previous methods yielded values of 10-14 mGy/100 mAs. The correlation between gestational age and fetal dose was not significant (P = .543). Normalized fetal dose decreased linearly with increasing patient perimeter (R(2) = 0.681, P < .001), and a two-factor model with patient perimeter and fetal depth demonstrated a strong correlation with fetal dose (R(2) = 0.799, P < .002). CONCLUSION A method for the estimation of fetal dose from models of actual patient anatomy that represented a range of gestational age and patient size was developed. Fetal dose correlated with maternal perimeter and varied more than previously recognized. This correlation improves when maternal size and fetal depth are combined.


Medical Physics | 2010

The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: Using CTDIvol to account for differences between scanners

A Turner; Maria Zankl; J DeMarco; Christopher H. Cagnon; Di Zhang; Erin Angel; Dianna D. Cody; Donna M. Stevens; Cynthia H. McCollough; Michael F. McNitt-Gray

PURPOSE Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDIvol measurements to account for differences in MDCT scanners that lead to organ dose differences. METHODS Monte Carlo simulations of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDIvol values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDIvol value for those acquisition conditions. RESULTS CTDIvol values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDIvoI values, the differences across scanners become very small. For the CTDIvol, normalized dose values the CoVs across scanners for different organs ranged from a minimum of 2.4% (for skin tissue) to a maximum of 8.5% (for the adrenals) with a mean of 5.2%. CONCLUSIONS This work has revealed that there is considerable variation among modern MDCT scanners in both CTDIvol and organ dose values. Because these variations are similar, CTDIvol can be used as a normalization factor with excellent results. This demonstrates the feasibility of establishing scanner-independent organ dose estimates by using CTDIvol to account for the differences between scanners.


American Journal of Roentgenology | 2009

Dose to radiosensitive organs during routine chest CT: Effects of tube current modulation

Erin Angel; Nazanin Yaghmai; Cecilia Matilda Jude; J DeMarco; Christopher H. Cagnon; Jonathan G. Goldin; Cynthia H. McCollough; Andrew N. Primak; Dianna D. Cody; Donna M. Stevens; Michael F. McNitt-Gray

OBJECTIVE The aims of this study were to estimate the dose to radiosensitive organs (glandular breast and lung) in patients of various sizes undergoing routine chest CT examinations with and without tube current modulation; to quantify the effect of tube current modulation on organ dose; and to investigate the relation between patient size and organ dose to breast and lung resulting from chest CT examinations. MATERIALS AND METHODS Thirty voxelized models generated from images of patients were extended to include lung contours and were used to represent a cohort of women of various sizes. Monte Carlo simulation-based virtual MDCT scanners had been used in a previous study to estimate breast dose from simulations of a fixed-tube-current and a tube current-modulated chest CT examinations of each patient model. In this study, lung doses were estimated for each simulated examination, and the percentage organ dose reduction attributed to tube current modulation was correlated with patient size for both glandular breast and lung tissues. RESULTS The average radiation dose to lung tissue from a chest CT scan obtained with fixed tube current was 23 mGy. The use of tube current modulation reduced the lung dose an average of 16%. Reductions in organ dose (up to 56% for lung) due to tube current modulation were more substantial among smaller patients than larger. For some larger patients, use of tube current modulation for chest CT resulted in an increase in organ dose to the lung as high as 33%. For chest CT, lung dose and breast dose estimates had similar correlations with patient size. On average the two organs receive approximately the same dose effects from tube current modulation. CONCLUSION The dose to radiosensitive organs during fixed-tube-current and tube current-modulated chest CT can be estimated on the basis of patient size. Organ dose generally decreases with the use of tube current-modulated acquisition, but patient size can directly affect the dose reduction achieved.


International Journal of Radiation Oncology Biology Physics | 2002

INVESTIGATIONS OF A MINIMALLY INVASIVE METHOD FOR TREATMENT OF SPINAL MALIGNANCIES WITH LINAC STEREOTACTIC RADIATION THERAPY: ACCURACY AND ANIMAL STUDIES

Paul M. Medin; Timothy D. Solberg; Antonio A.F. De Salles; Christopher H. Cagnon; Michael T. Selch; J. Patrick Johnson; James B. Smathers; Eric R. Cosman

PURPOSE A new method for stereotactic irradiation of spinal malignancies is presented, with evaluations of the theoretic and practical limitations of localization accuracy and the implementation of the method in swine. MATERIALS AND METHODS In a percutaneous procedure, a minimum of three small (1.7-mm-diameter) titanium markers are permanently affixed to a vertebra. Markers are localized on biplanar radiographs while isocenter positions are determined on CT. An external fiducial frame defines a three-dimensional coordinate system through the patient. Radiographs coupled with a rigid body rotation algorithm account for daily differences in patient position. Phantom studies were used to verify theoretic uncertainty calculations from a simulation program. A swine model was used to evaluate the difficulty and duration of the implant technique, the suitability of the vertebral process as an implant site, vertebral motion due to normal respiration, and the ability to target one vertebra with markers in an adjacent vertebra. RESULTS Theoretic accuracy studies confirmed that localization accuracy is a function of marker separation. Phantom studies involving 296 measurements showed that individual implants could be localized within +/-0.25 mm. The largest targeting error observed in 3,600 measurements of 100 implant configurations was 1.17 mm. The implant procedure took 5-10 minutes per site. No significant migration of implants was observed up to 35 days postimplantation, and respiratory motion had no detectable influence on vertebral position. Adjacent vertebrae may be useful for targeting one another with a small sacrifice in localization accuracy. CONCLUSIONS The use of implanted markers for localization of spinal malignancies has potential for applications in stereotactic radiotherapy. Phantom measurements suggest that localization accuracy similar to intracranial stereotactic radiotherapy techniques is achievable. Swine studies suggest that the implant technique is expedient and feasible for tumor targeting purposes.


Physics in Medicine and Biology | 2009

Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

Erin Angel; Nazanin Yaghmai; Cecilia Matilda Jude; J DeMarco; Christopher H. Cagnon; Jonathan G. Goldin; Andrew N. Primak; Donna M. Stevens; Dianna D. Cody; Cynthia H. McCollough; Michael F. McNitt-Gray

Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patients glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patients clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.


Medical Physics | 1999

Radiation dose in Spiral CT: The relative effects of collimation and pitch

Michael F. McNitt-Gray; Christopher H. Cagnon; Timothy D. Solberg; Indrin Chetty

The proliferation of helical CT and thin slice protocols has motivated a reevaluation of methods for determining radiation dose. Traditional measurements may be insufficient in that computed tomography dose index(CTDI) is undefined for the case of continuous table motion which characterizes helical CT. We have measured the radiation dose using thermoluminescent dosimeters(TLDs) under contiguous axial, contiguous helical, and noncontiguous helical scans. A device that holds tightly spaced TLDs was inserted into a 32-cm-diam Plexiglas™ (CTDI) phantom so that (1) TLDs were exposed to contiguous axial scans; (2) TLDs were exposed to a contiguous (pitch 1) helical scans, and (3) TLDs were exposed to noncontiguous (pitch >1) helical scans. The TLDs integrated exposure from both primary and scattered radiation resulting from scanning a volume of the phantom. The TLD measurements were repeated at several slice thicknesses and for pitches of 1, 1.5, and 2. For a direct comparison, conventional pencil ionization chamber measurements were made at the same slice thicknesses. Our results show that contiguous helical CT scans (pitch of 1) give approximately the same radiation dose as contiguous axial scans acquired with the same technical factors. For noncontiguous scans (pitch >1) at a given collimation,radiation dose decreases as pitch increases; specifically as 1/pitch. However, the dose remained relatively constant across collimations (±20% of the 10 mm slice dose) for both axial and helical scans. At smaller slice thicknesses, the radiation profile width (full width at half-maximum) is greater than the nominal slice thickness, which results in extended radiation overlap between slices and no net change in radiation dose compared to thicker slices. Finally, for a given table speed, radiation dose decreases when a higher pitch is used with a thinner collimation.


Radiology | 2015

Radiation doses in consecutive ct examinations from five university of California medical centers 1

Rebecca Smith-Bindman; Michelle Moghadassi; Nicole Wilson; Thomas R. Nelson; John M. Boone; Christopher H. Cagnon; Robert G. Gould; David J. Hall; Mayil Krishnam; Ramit Lamba; Michael F. McNitt-Gray; Anthony Seibert; Diana L. Miglioretti

PURPOSE To summarize data on computed tomographic (CT) radiation doses collected from consecutive CT examinations performed at 12 facilities that can contribute to the creation of reference levels. MATERIALS AND METHODS The study was approved by the institutional review boards of the collaborating institutions and was compliant with HIPAA. Radiation dose metrics were prospectively and electronically collected from 199 656 consecutive CT examinations in 83 181 adults and 3871 consecutive CT examinations in 2609 children at the five University of California medical centers during 2013. The median volume CT dose index (CTDIvol), dose-length product (DLP), and effective dose, along with the interquartile range (IQR), were calculated separately for adults and children and stratified according to anatomic region. Distributions for DLP and effective dose are reported for single-phase examinations, multiphase examinations, and all examinations. RESULTS For adults, the median CTDIvol was 50 mGy (IQR, 37-62 mGy) for the head, 12 mGy (IQR, 7-17 mGy) for the chest, and 12 mGy (IQR, 8-17 mGy) for the abdomen. The median DLPs for single-phase, multiphase, and all examinations, respectively, were as follows: head, 880 mGy · cm (IQR, 640-1120 mGy · cm), 1550 mGy · cm (IQR, 1150-2130 mGy · cm), and 960 mGy · cm (IQR, 690-1300 mGy · cm); chest, 420 mGy · cm (IQR, 260-610 mGy · cm), 880 mGy · cm (IQR, 570-1430 mGy · cm), and 550 mGy · cm (IQR 320-830 mGy · cm); and abdomen, 580 mGy · cm (IQR, 360-860 mGy · cm), 1220 mGy · cm (IQR, 850-1790 mGy · cm), and 960 mGy · cm (IQR, 600-1460 mGy · cm). Median effective doses for single-phase, multiphase, and all examinations, respectively, were as follows: head, 2 mSv (IQR, 1-3 mSv), 4 mSv (IQR, 3-8 mSv), and 2 mSv (IQR, 2-3 mSv); chest, 9 mSv (IQR, 5-13 mSv), 18 mSv (IQR, 12-29 mSv), and 11 mSv (IQR, 6-18 mSv); and abdomen, 10 mSv (IQR, 6-16 mSv), 22 mSv (IQR, 15-32 mSv), and 17 mSv (IQR, 11-26 mSv). In general, values for children were approximately 50% those for adults in the head and 25% those for adults in the chest and abdomen. CONCLUSION These summary dose data provide a starting point for institutional evaluation of CT radiation doses.


Medical Physics | 2013

The feasibility of a regional CTDIvol to estimate organ dose from tube current modulated CT exams

M Khatonabadi; Hyun J. Kim; Peiyun Lu; Kyle McMillan; Christopher H. Cagnon; J DeMarco; Michael F. McNitt-Gray

PURPOSE In AAPM Task Group 204, the size-specific dose estimate (SSDE) was developed by providing size adjustment factors which are applied to the Computed Tomography (CT) standardized dose metric, CTDI(vol). However, that work focused on fixed tube current scans and did not specifically address tube current modulation (TCM) scans, which are currently the majority of clinical scans performed. The purpose of this study was to extend the SSDE concept to account for TCM by investigating the feasibility of using anatomic and organ specific regions of scanner output to improve accuracy of dose estimates. METHODS Thirty-nine adult abdomen/pelvis and 32 chest scans from clinically indicated CT exams acquired on a multidetector CT using TCM were obtained with Institutional Review Board approval for generating voxelized models. Along with image data, raw projection data were obtained to extract TCM functions for use in Monte Carlo simulations. Patient size was calculated using the effective diameter described in TG 204. In addition, the scanner-reported CTDI(vo)l (CTDI(vol),global) was obtained for each patient, which is based on the average tube current across the entire scan. For the abdomen/pelvis scans, liver, spleen, and kidneys were manually segmented from the patient datasets; for the chest scans, lungs and for female models only, glandular breast tissue were segmented. For each patient organ doses were estimated using Monte Carlo Methods. To investigate the utility of regional measures of scanner output, regional and organ anatomic boundaries were identified from image data and used to calculate regional and organ-specific average tube current values. From these regional and organ-specific averages, CTDI(vol) values, referred to as regional and organ-specific CTDI(vol), were calculated for each patient. Using an approach similar to TG 204, all CTDI(vol) values were used to normalize simulated organ doses; and the ability of each normalized dose to correlate with patient size was investigated. RESULTS For all five organs, the correlations with patient size increased when organ doses were normalized by regional and organ-specific CTDI(vol) values. For example, when estimating dose to the liver, CTDI(vol),global yielded a R(2) value of 0.26, which improved to 0.77 and 0.86, when using the regional and organ-specific CTDI(vol) for abdomen and liver, respectively. For breast dose, the global CTDI(vol) yielded a R(2) value of 0.08, which improved to 0.58 and 0.83, when using the regional and organ-specific CTDI(vol) for chest and breasts, respectively. The R(2) values also increased once the thoracic models were separated for the analysis into females and males, indicating differences between genders in this region not explained by a simple measure of effective diameter. CONCLUSIONS This work demonstrated the utility of regional and organ-specific CTDI(vol) as normalization factors when using TCM. It was demonstrated that CTDI(vol),global is not an effective normalization factor in TCM exams where attenuation (and therefore tube current) varies considerably throughout the scan, such as abdomen/pelvis and even thorax. These exams can be more accurately assessed for dose using regional CTDI(vol) descriptors that account for local variations in scanner output present when TCM is employed.

Collaboration


Dive into the Christopher H. Cagnon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J DeMarco

University of California

View shared research outputs
Top Co-Authors

Avatar

Dianna D. Cody

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Donna M. Stevens

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryam Bostani

University of California

View shared research outputs
Top Co-Authors

Avatar

Di Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge