Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Shield is active.

Publication


Featured researches published by Anthony Shield.


The FASEB Journal | 2005

Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans

Vernon G. Coffey; Zhihui Zhong; Anthony Shield; Benedict J. Canny; Alexander V. Chibalin; Juleen R. Zierath; John A. Hawley

Skeletal muscle from strength‐ and endurance‐trained individuals represents diverse adaptive states. In this regard, AMPK‐PGC‐1α signaling mediates several adaptations to endurance training, while up‐regulation of the Akt‐TSC2‐mTOR pathway may underlie increased protein synthesis after resistance exercise. We determined the effect of prior training history on signaling responses in seven strength‐trained and six endurance‐trained males who undertook 1 h cycling at 70% VO2peak or eight sets of five maximal repetitions of isokinetic leg extensions. Muscle biopsies were taken at rest, immediately and 3 h postexercise. AMPK phosphorylation increased after cycling in strength‐trained (54%; P<0.05) but not endurance‐trained subjects. Conversely, AMPK was elevated after resistance exercise in endurance‐ (114%; P<0.05), but not strength‐trained subjects. Akt phosphorylation increased in endurance‐ (50%; P<0.05), but not strength‐trained subjects after cycling but was unchanged in either group after resistance exercise. TSC2 phosphorylation was decreased (47%; P<0.05) in endurance‐trained subjects following resistance exercise, but cycling had little effect on the phosphorylation state of this protein in either group. p70S6K phosphorylation increased in endurance‐ (118%; P<0.05), but not strength‐trained subjects after resistance exercise, but was similar to rest in both groups after cycling. Similarly, phosphorylation of S6 protein, a substrate for p70 S6K, was increased immediately following resistance exercise in endurance‐ (129%; P<0.05), but not strength‐trained subjects. In conclusion, a degree of “response plasticity” is conserved at opposite ends of the endurance‐hypertrophic adaptation continuum. Moreover, prior training attenuates the exercise specific signaling responses involved in single mode adaptations to training.


Sports Medicine | 2004

Assessing Voluntary Muscle Activation with the Twitch Interpolation Technique

Anthony Shield; Shi Zhou

The twitch interpolation technique is commonly employed to assess the completeness of skeletal muscle activation during voluntary contractions. Early applications of twitch interpolation suggested that healthy human subjects could fully activate most of the skeletal muscles to which the technique had been applied. More recently, however, highly sensitive twitch interpolation has revealed that even healthy adults routinely fail to fully activate a number of skeletal muscles despite apparently maximal effort. Unfortunately, some disagreement exists as to how the results of twitch interpolation should be employed to quantify voluntary activation. The negative linear relationship between evoked twitch force and voluntary force that has been observed by some researchers implies that voluntary activation can be quantified by scaling a single interpolated twitch to a control twitch evoked in relaxed muscle.Observations of non-linear evoked-voluntary force relationships have lead to the suggestion that the single interpolated twitch ratio can not accurately estimate voluntary activation. Instead, it has been proposed that muscle activation is better determined by extrapolating the relationship between evoked and voluntary force to provide an estimate of true maximum force. However, criticism of the single interpolated twitch ratio typically fails to take into account the reasons for the non-linearity of the evoked-voluntary force relationship. When these reasons are examined, it appears that most are even more challenging to the validity of extrapolation than they are to the linear equation. Furthermore, several factors that contribute to the observed non-linearity can be minimised or even eliminated with appropriate experimental technique. The detection of small activation deficits requires high resolution measurement of force and careful consideration of numerous experimental details such as the site of stimulation, stimulation intensity and the number of interpolated stimuli. Sensitive twitch interpolation techniques have revealed small to moderate deficits in voluntary activation during brief maximal efforts and progressively increasing activation deficits (central fatigue) during exhausting exercise. A small number of recent studies suggest that resistance training may result in improved voluntary activation of the quadriceps femoris and ankle plantarflexor muscles but not the biceps brachii. A significantly larger body of evidence indicates that voluntary activation declines as a consequence of bed-rest, joint injury and joint degeneration. Twitch interpolation has also been employed to study the mechanisms by which caffeine and pseudoephedrine enhance exercise performance.


Sports Medicine | 2012

Hamstring Strain Injuries

David A. Opar; Morgan D. Williams; Anthony Shield

Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuro-muscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.


Archive | 2012

Hamstring strain injuries: Factors that lead to injury and re-injury [accepted manuscript]

David A. Opar; Morgan Williams; Anthony Shield

Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuro-muscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.


Experimental Gerontology | 2010

Aging and the force-velocity relationship of muscles.

Isaac Selva Raj; Stephen Bird; Anthony Shield

Aging in humans is associated with a loss in neuromuscular function and performance. This is related, in part, to the reduction in muscular strength and power caused by a loss of skeletal muscle mass (sarcopenia) and changes in muscle architecture. Due to these changes, the force-velocity (f-v) relationship of human muscles alters with age. This change has functional implications such as slower walking speeds. Different methods to reverse these changes have been investigated, including traditional resistance training, power training and eccentric (or eccentrically-biased) resistance training. This review will summarise the changes of the f-v relationship with age, the functional implications of these changes and the various methods to reverse or at least partly ameliorate these changes.


Medicine and Science in Sports and Exercise | 2015

Eccentric Hamstring Strength and Hamstring Injury Risk in Australian Footballers

David A. Opar; Morgan D. Williams; Ryan Timmins; Jack Hickey; Steven Duhig; Anthony Shield

PURPOSE Are eccentric hamstring strength and between-limb imbalance in eccentric strength, measured during the Nordic hamstring exercise, risk factors for hamstring strain injury (HSI)? METHODS Elite Australian footballers (n = 210) from five different teams participated. Eccentric hamstring strength during the Nordic exercise was obtained at the commencement and conclusion of preseason training and at the midpoint of the season. Injury history and demographic data were also collected. Reports on prospectively occurring HSI were completed by the team medical staff. Relative risk (RR) was determined for univariate data, and logistic regression was employed for multivariate data. RESULTS Twenty-eight new HSI were recorded. Eccentric hamstring strength below 256 N at the start of the preseason and 279 N at the end of the preseason increased the risk of future HSI 2.7-fold (RR, 2.7; 95% confidence interval, 1.3 to 5.5; P = 0.006) and 4.3-fold (RR, 4.3; 95% confidence interval, 1.7 to 11.0; P = 0.002), respectively. Between-limb imbalance in strength of greater than 10% did not increase the risk of future HSI. Univariate analysis did not reveal a significantly greater RR for future HSI in athletes who had sustained a lower limb injury of any kind within the last 12 months. Logistic regression revealed interactions between both athlete age and history of HSI with eccentric hamstring strength, whereby the likelihood of future HSI in older athletes or athletes with a history of HSI was reduced if an athlete had high levels of eccentric strength. CONCLUSION Low levels of eccentric hamstring strength increased the risk of future HSI. Interaction effects suggest that the additional risk of future HSI associated with advancing age or previous injury was mitigated by higher levels of eccentric hamstring strength.


British Journal of Sports Medicine | 2016

Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study

Ryan Timmins; Matthew N. Bourne; Anthony Shield; Morgan D. Williams; Christian Lorenzen; David A. Opar

Background/aim To investigate the role of eccentric knee flexor strength, between-limb imbalance and biceps femoris long head (BFlh) fascicle length on the risk of future hamstring strain injury (HSI). Methods Elite soccer players (n=152) from eight different teams participated. Eccentric knee flexor strength during the Nordic hamstring exercise and BFlh fascicle length were assessed at the beginning of preseason. The occurrences of HSIs following this were recorded by the team medical staff. Relative risk (RR) was determined for univariate data, and logistic regression was employed for multivariate data. Results Twenty seven new HSIs were reported. Eccentric knee flexor strength below 337 N (RR=4.4; 95% CI 1.1 to 17.5) and possessing BFlh fascicles shorter than 10.56 cm (RR=4.1; 95% CI 1.9 to 8.7) significantly increased the risk of a HSI. Multivariate logistic regression revealed significant effects when combinations of age, history of HSI, eccentric knee flexor strength and BFlh fascicle length were explored. From these analyses the likelihood of a future HSI in older athletes or those with a HSI history was reduced if high levels of eccentric knee flexor strength and longer BFlh fascicles were present. Conclusions The presence of short BFlh fascicles and low levels of eccentric knee flexor strength in elite soccer players increases the risk of future HSI. The greater risk of a future HSI in older players or those with a previous HSI is reduced when they have longer BFlh fascicles and high levels of eccentric strength.


The Journal of Physiology | 2015

Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training

Truls Raastad; James F. Markworth; Vandre C. Figueiredo; Ingrid M. Egner; Anthony Shield; David Cameron-Smith; Jeff S. Coombes; Jonathan M. Peake

Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training.


Journal of Orthopaedic & Sports Physical Therapy | 2013

A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study.

David A. Opar; Timothy Piatkowski; Morgan D. Williams; Anthony Shield

STUDY DESIGN Reliability and case-control injury study. OBJECTIVES To determine if a novel device designed to measure eccentric knee flexor strength via the Nordic hamstring exercise displays acceptable test-retest reliability; to determine normative values for eccentric knee flexor strength derived from the device in individuals without a history of hamstring strain injury (HSI); and to determine if the device can detect weakness in elite athletes with a previous history of unilateral HSI. BACKGROUND HSI and reinjury are the most common cause of lost playing time in a number of sports. Eccentric knee flexor weakness is a major modifiable risk factor for future HSI. However, at present, there is a lack of easily accessible equipment to assess eccentric knee flexor strength. METHODS Thirty recreationally active males without a history of HSI completed the Nordic hamstring exercise on the device on 2 separate occasions. Intraclass correlation coefficients, typical error, typical error as a coefficient of variation, and minimal detectable change at a 95% confidence level were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed the Nordic hamstring exercise on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. RESULTS The device displayed high to moderate reliability (intraclass correlation coefficient = 0.83-0.90; typical error, 21.7-27.5 N; typical error as a coefficient of variation, 5.8%-8.5%; minimal detectable change at a 95% confidence level, 60.1-76.2 N). Mean ± SD normative eccentric flexor strength in the uninjured group was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limb was 15% weaker than the contralateral uninjured limb (mean difference, 50.3 N; 95% confidence interval: 25.7, 74.9; P<.01), 15% weaker than the normative left limb (mean difference, 50.0 N; 95% confidence interval: 1.4, 98.5; P = .04), and 18% weaker than the normative right limb (mean difference, 66.5 N; 95% confidence interval: 18.0, 115.1; P<.01). CONCLUSION The experimental device offers a reliable method to measure eccentric knee flexor strength and strength asymmetry and to detect residual weakness in previously injured elite athletes.


Medicine and Science in Sports and Exercise | 2015

Biceps femoris long head architecture: A reliability and retrospective injury study

Ryan Timmins; Anthony Shield; Morgan D. Williams; Christian Lorenzen; David A. Opar

PURPOSE This study aimed (i) to determine the reliability of two-dimensional ultrasonography for the assessment of biceps femoris long head (BFlh) architectural characteristics and (ii) to determine whether limbs with a history of strain injury in the BFlh display different architecture and eccentric strength compared to uninjured limbs. METHODS This case-control study (control [n = 20], injured group [n = 16], males) assessed the BFlh architecture at rest and during graded isometric contractions using two-dimensional ultrasonography. The control group were assessed three times (>24 h apart) to determine reliability. Previously injured individuals were evaluated once. RESULTS The assessment of BFlh architecture was highly reliable (intraclass correlations >0.90). Fascicle length (P < 0.001; d range = 0.67-1.34) and fascicle length relative to muscle thickness (P < 0.001; d range = 0.58-0.85) of the previously injured BFlh were significantly less than the contralateral uninjured BFlh at all intensities. Pennation angle of the previously injured BFlh was significantly greater (P < 0.001; d range = 0.62-0.88) than the contralateral uninjured BFlh at all intensities. Eccentric strength in the previously injured limb was significantly lower than that in the contralateral limb (-15.4%; -52.5 N, 95% confidence interval = -76.2 to -28.4; P < 0.001, d = 0.56). CONCLUSIONS These data indicate that two-dimensional ultrasonography is reliable for assessing BFlh architecture at rest and during graded isometric contractions. Fascicle length, fascicle length relative to muscle thickness, and pennation angle are significantly different in previously injured BFlh compared to an uninjured contralateral BFlh. Eccentric strength of the previously injured limb is also significantly lower than that of the uninjured contralateral limb. These findings have implications for rehabilitation and injury prevention practices, which should consider altered architectural characteristics.

Collaboration


Dive into the Anthony Shield's collaboration.

Top Co-Authors

Avatar

David A. Opar

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Morgan D. Williams

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ryan Timmins

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Matthew N. Bourne

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Steven Duhig

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nuala Dear

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Hickey

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Christian Lorenzen

Australian Catholic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge