Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Morgan D. Williams is active.

Publication


Featured researches published by Morgan D. Williams.


Sports Medicine | 2012

Hamstring Strain Injuries

David A. Opar; Morgan D. Williams; Anthony Shield

Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuro-muscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.


Medicine and Science in Sports and Exercise | 2015

Eccentric Hamstring Strength and Hamstring Injury Risk in Australian Footballers

David A. Opar; Morgan D. Williams; Ryan Timmins; Jack Hickey; Steven Duhig; Anthony Shield

PURPOSE Are eccentric hamstring strength and between-limb imbalance in eccentric strength, measured during the Nordic hamstring exercise, risk factors for hamstring strain injury (HSI)? METHODS Elite Australian footballers (n = 210) from five different teams participated. Eccentric hamstring strength during the Nordic exercise was obtained at the commencement and conclusion of preseason training and at the midpoint of the season. Injury history and demographic data were also collected. Reports on prospectively occurring HSI were completed by the team medical staff. Relative risk (RR) was determined for univariate data, and logistic regression was employed for multivariate data. RESULTS Twenty-eight new HSI were recorded. Eccentric hamstring strength below 256 N at the start of the preseason and 279 N at the end of the preseason increased the risk of future HSI 2.7-fold (RR, 2.7; 95% confidence interval, 1.3 to 5.5; P = 0.006) and 4.3-fold (RR, 4.3; 95% confidence interval, 1.7 to 11.0; P = 0.002), respectively. Between-limb imbalance in strength of greater than 10% did not increase the risk of future HSI. Univariate analysis did not reveal a significantly greater RR for future HSI in athletes who had sustained a lower limb injury of any kind within the last 12 months. Logistic regression revealed interactions between both athlete age and history of HSI with eccentric hamstring strength, whereby the likelihood of future HSI in older athletes or athletes with a history of HSI was reduced if an athlete had high levels of eccentric strength. CONCLUSION Low levels of eccentric hamstring strength increased the risk of future HSI. Interaction effects suggest that the additional risk of future HSI associated with advancing age or previous injury was mitigated by higher levels of eccentric hamstring strength.


British Journal of Sports Medicine | 2016

Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study

Ryan Timmins; Matthew N. Bourne; Anthony Shield; Morgan D. Williams; Christian Lorenzen; David A. Opar

Background/aim To investigate the role of eccentric knee flexor strength, between-limb imbalance and biceps femoris long head (BFlh) fascicle length on the risk of future hamstring strain injury (HSI). Methods Elite soccer players (n=152) from eight different teams participated. Eccentric knee flexor strength during the Nordic hamstring exercise and BFlh fascicle length were assessed at the beginning of preseason. The occurrences of HSIs following this were recorded by the team medical staff. Relative risk (RR) was determined for univariate data, and logistic regression was employed for multivariate data. Results Twenty seven new HSIs were reported. Eccentric knee flexor strength below 337 N (RR=4.4; 95% CI 1.1 to 17.5) and possessing BFlh fascicles shorter than 10.56 cm (RR=4.1; 95% CI 1.9 to 8.7) significantly increased the risk of a HSI. Multivariate logistic regression revealed significant effects when combinations of age, history of HSI, eccentric knee flexor strength and BFlh fascicle length were explored. From these analyses the likelihood of a future HSI in older athletes or those with a HSI history was reduced if high levels of eccentric knee flexor strength and longer BFlh fascicles were present. Conclusions The presence of short BFlh fascicles and low levels of eccentric knee flexor strength in elite soccer players increases the risk of future HSI. The greater risk of a future HSI in older players or those with a previous HSI is reduced when they have longer BFlh fascicles and high levels of eccentric strength.


Journal of Orthopaedic & Sports Physical Therapy | 2013

A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study.

David A. Opar; Timothy Piatkowski; Morgan D. Williams; Anthony Shield

STUDY DESIGN Reliability and case-control injury study. OBJECTIVES To determine if a novel device designed to measure eccentric knee flexor strength via the Nordic hamstring exercise displays acceptable test-retest reliability; to determine normative values for eccentric knee flexor strength derived from the device in individuals without a history of hamstring strain injury (HSI); and to determine if the device can detect weakness in elite athletes with a previous history of unilateral HSI. BACKGROUND HSI and reinjury are the most common cause of lost playing time in a number of sports. Eccentric knee flexor weakness is a major modifiable risk factor for future HSI. However, at present, there is a lack of easily accessible equipment to assess eccentric knee flexor strength. METHODS Thirty recreationally active males without a history of HSI completed the Nordic hamstring exercise on the device on 2 separate occasions. Intraclass correlation coefficients, typical error, typical error as a coefficient of variation, and minimal detectable change at a 95% confidence level were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed the Nordic hamstring exercise on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. RESULTS The device displayed high to moderate reliability (intraclass correlation coefficient = 0.83-0.90; typical error, 21.7-27.5 N; typical error as a coefficient of variation, 5.8%-8.5%; minimal detectable change at a 95% confidence level, 60.1-76.2 N). Mean ± SD normative eccentric flexor strength in the uninjured group was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limb was 15% weaker than the contralateral uninjured limb (mean difference, 50.3 N; 95% confidence interval: 25.7, 74.9; P<.01), 15% weaker than the normative left limb (mean difference, 50.0 N; 95% confidence interval: 1.4, 98.5; P = .04), and 18% weaker than the normative right limb (mean difference, 66.5 N; 95% confidence interval: 18.0, 115.1; P<.01). CONCLUSION The experimental device offers a reliable method to measure eccentric knee flexor strength and strength asymmetry and to detect residual weakness in previously injured elite athletes.


Medicine and Science in Sports and Exercise | 2015

Biceps femoris long head architecture: A reliability and retrospective injury study

Ryan Timmins; Anthony Shield; Morgan D. Williams; Christian Lorenzen; David A. Opar

PURPOSE This study aimed (i) to determine the reliability of two-dimensional ultrasonography for the assessment of biceps femoris long head (BFlh) architectural characteristics and (ii) to determine whether limbs with a history of strain injury in the BFlh display different architecture and eccentric strength compared to uninjured limbs. METHODS This case-control study (control [n = 20], injured group [n = 16], males) assessed the BFlh architecture at rest and during graded isometric contractions using two-dimensional ultrasonography. The control group were assessed three times (>24 h apart) to determine reliability. Previously injured individuals were evaluated once. RESULTS The assessment of BFlh architecture was highly reliable (intraclass correlations >0.90). Fascicle length (P < 0.001; d range = 0.67-1.34) and fascicle length relative to muscle thickness (P < 0.001; d range = 0.58-0.85) of the previously injured BFlh were significantly less than the contralateral uninjured BFlh at all intensities. Pennation angle of the previously injured BFlh was significantly greater (P < 0.001; d range = 0.62-0.88) than the contralateral uninjured BFlh at all intensities. Eccentric strength in the previously injured limb was significantly lower than that in the contralateral limb (-15.4%; -52.5 N, 95% confidence interval = -76.2 to -28.4; P < 0.001, d = 0.56). CONCLUSIONS These data indicate that two-dimensional ultrasonography is reliable for assessing BFlh architecture at rest and during graded isometric contractions. Fascicle length, fascicle length relative to muscle thickness, and pennation angle are significantly different in previously injured BFlh compared to an uninjured contralateral BFlh. Eccentric strength of the previously injured limb is also significantly lower than that of the uninjured contralateral limb. These findings have implications for rehabilitation and injury prevention practices, which should consider altered architectural characteristics.


Medicine and Science in Sports and Exercise | 2016

Architectural Changes of the Biceps Femoris Long Head after Concentric or Eccentric Training.

Ryan Timmins; J. Ruddy; Joel Presland; Nirav Maniar; Anthony Shield; Morgan D. Williams; David A. Opar

PURPOSE To determine the architectural adaptations of the biceps femoris long head (BFlh) after concentric or eccentric strength training interventions and the time course of adaptation during training and detraining. METHODS Participants in this intervention (concentric training group [n = 14], eccentric training group [n = 14], male subjects) completed a 4-wk control period, followed by 6 wk of either concentric- or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 d of detraining. Architectural characteristics of BFlh were assessed at rest and during graded isometric contractions using two-dimensional ultrasonography at 28 d prebaseline; baseline; and days 14, 21, and 42 of the intervention and then again after 28 d of detraining. RESULTS BFlh fascicle length was significantly longer in the eccentric training group (P < 0.05; d range, 2.65-2.98) and shorter in the concentric training group (P < 0.05; d range, -1.62 to -0.96) after 42 d of training compared with baseline at all isometric contraction intensities. After the 28-d detraining period, BFlh fascicle length was significantly reduced in the eccentric training group at all contraction intensities compared with the end of the intervention (P < 0.05; d range, -1.73 to -1.55). There was no significant change in fascicle length of the concentric training group after the detraining period. CONCLUSIONS These results provide evidence that short-term resistance training can lead to architectural alterations in the BFlh. In addition, the eccentric training-induced lengthening of BFlh fascicle length was reversed and returned to baseline values after 28 d of detraining. The contraction mode specific adaptations in this study may have implications for injury prevention and rehabilitation.


American Journal of Sports Medicine | 2015

Eccentric Knee Flexor Strength and Risk of Hamstring Injuries in Rugby Union A Prospective Study

Matthew N. Bourne; David A. Opar; Morgan D. Williams; Anthony Shield

Background: Hamstring strain injuries (HSIs) represent the most common cause of lost playing time in rugby union. Eccentric knee flexor weakness and between-limb imbalance in eccentric knee flexor strength are associated with a heightened risk of HSIs in other sports; however, these variables have not been explored in rugby union. Purpose: To determine if lower levels of eccentric knee flexor strength or greater between-limb imbalance in this parameter during the Nordic hamstring exercise are risk factors for HSIs in rugby union. Study Design: Cohort study; Level of evidence, 2. Methods: This prospective study was conducted over the 2014 Super Rugby and Queensland Rugby Union seasons. In total, 178 rugby union players (mean age, 22.6 ± 3.8 years; mean height, 185.0 ± 6.8 cm; mean weight, 96.5 ± 13.1 kg) had their eccentric knee flexor strength assessed using a custom-made device during the preseason. Reports of previous hamstring, quadriceps, groin, calf, and anterior cruciate ligament injuries were also obtained. The main outcome measure was the prospective occurrence of HSIs. Results: Twenty players suffered at least 1 HSI during the study period. Players with a history of HSIs had a 4.1-fold (95% CI, 1.9-8.9; P = .001) greater risk of subsequent HSIs than players without such a history. Between-limb imbalance in eccentric knee flexor strength of ≥15% and ≥20% increased the risk of HSIs by 2.4-fold (95% CI, 1.1-5.5; P = .033) and 3.4-fold (95% CI, 1.5-7.6; P = .003), respectively. Lower eccentric knee flexor strength and other prior injuries were not associated with an increased risk of future HSIs. Multivariate logistic regression revealed that the risk of reinjuries was augmented in players with strength imbalances. Conclusion: Previous HSIs and between-limb imbalance in eccentric knee flexor strength were associated with an increased risk of future HSIs in rugby union. These results support the rationale for reducing imbalance, particularly in players who have suffered a prior HSI, to mitigate the risk of future injuries.


American Journal of Sports Medicine | 2013

Rate of Torque and Electromyographic Development During Anticipated Eccentric Contraction Is Lower in Previously Strained Hamstrings

David A. Opar; Morgan D. Williams; Ryan Timmins; Nuala Dear; Anthony Shield

Background: The effect of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. Purpose: To determine if recreational athletes with a history of unilateral hamstring strain injury will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development (RTD), and impulse (IMP) at 30, 50, and 100 milliseconds after the onset of myoelectrical activity or torque development in the previously injured limb compared with the uninjured limb. Study Design: Case control study; Level of evidence, 3. Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head), and 13 had no history of hamstring strain injury. Following familiarization, all athletes undertook isokinetic dynamometry testing and surface electromyography (integrated EMG; iEMG) assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at −60 and −180 deg·s−1. Results: In the injured limb of the injured group, compared with the contralateral uninjured limb, RTD and IMP was lower during −60 deg·s−1 eccentric contractions at 50 milliseconds (RTD: injured limb, 312.27 ± 191.78 N·m·s−1 vs uninjured limb, 518.54 ± 172.81 N·m·s−1, P = .008; IMP: injured limb, 0.73 ± 0.30 N·m·s vs uninjured limb, 0.97 ± 0.23 N·m·s, P = .005) and 100 milliseconds (RTD: injured limb, 280.03 ± 131.42 N·m·s−1 vs uninjured limb, 460.54 ± 152.94 N·m·s−1, P = .001; IMP: injured limb, 2.15 ± 0.89 N·m·s vs uninjured limb, 3.07 ± 0.63 N·m·s, P < .001) after the onset of contraction. Biceps femoris long head muscle activation was lower at 100 milliseconds at both contraction speeds (–60 deg·s−1, normalized iEMG activity [×1000]: injured limb, 26.25 ± 10.11 vs uninjured limb, 33.57 ± 8.29, P = .009; –180 deg·s−1, normalized iEMG activity [×1000]: injured limb, 31.16 ± 10.01 vs uninjured limb, 39.64 ± 8.36, P = .009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower RTD and IMP during slow maximal eccentric contraction compared with the contralateral uninjured limb. Lower myoelectrical activity was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings could have important implications for hamstring strain injury and reinjury. Particularly, given the importance of high levels of muscle activity to bring about specific muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation interventions and suggest that greater attention be given to neural function of the knee flexors after hamstring strain injury.


British Journal of Sports Medicine | 2017

Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention

Matthew N. Bourne; Steven Duhig; Ryan Timmins; Morgan D. Williams; David A. Opar; Aiman Al Najjar; Graham K. Kerr; Anthony Shield

Background The architectural and morphological adaptations of the hamstrings in response to training with different exercises have not been explored. Purpose To evaluate changes in biceps femoris long head (BFLH) fascicle length and hamstring muscle size following 10-weeks of Nordic hamstring exercise (NHE) or hip extension (HE) training. Methods 30 recreationally active male athletes (age, 22.0±3.6 years; height, 180.4±7 cm; weight, 80.8±11.1 kg) were allocated to 1 of 3 groups: (1) HE training (n=10), NHE training (n=10), or no training (control, CON) (n=10). BFLH fascicle length was assessed before, during (Week 5) and after the intervention with a two-dimensional ultrasound. Hamstring muscle size was determined before and after training via MRI. Results Compared with baseline, BFLH fascicles were lengthened in the NHE and HE groups at mid-training (d=1.12–1.39, p<0.001) and post-training (d=1.77–2.17, p<0.001) and these changes did not differ significantly between exercises (d=0.49–0.80, p=0.279–0.976). BFLH volume increased more for the HE than the NHE (d=1.03, p=0.037) and CON (d=2.24, p<0.001) groups. Compared with the CON group, both exercises induced significant increases in semitendinosus volume (d=2.16–2.50, ≤0.002) and these increases were not significantly different (d=0.69, p=0.239). Conclusion NHE and HE training both stimulate significant increases in BFLH fascicle length; however, HE training may be more effective for promoting hypertrophy in the BFLH.


Journal of Alternative and Complementary Medicine | 2010

Efficacy of a Whole-Body Vibration Intervention on Functional Performance of Community-Dwelling Older Adults

Trentham Furness; Wayne Maschette; Christian Lorenzen; Geraldine Naughton; Morgan D. Williams

OBJECTIVE The objective of this study was to investigate efficacy of a whole-body vibration (WBV) intervention on functional performance of community-dwelling older adults. DESIGN The study was designed as a randomized controlled trial. SETTING The setting was in community centers. SUBJECTS There were 37 total subjects (21 women and 16 men) (age 69 +/- 8 years; mean +/- standard deviation). INTERVENTION Participants were randomized to a WBV intervention (INT) group and control (CON) group. Whole-body vibration was administered for five 1-minute bouts per session, 3 days per week, for 6 weeks. The CON group was asked not to commence any form of physical training. OUTCOME MEASURES Functional performance was measured with the timed-up-and-go-test (TUG) and sit-to-stand-test (STS). RESULTS After WBV, TUG and STS time was less for INT than CON (INT, TUG 7.6 +/- 0.3 seconds, STS 11.9 +/- 2.0 seconds; CON, TUG 8.6 +/- 0.9, STS 13.5 +/- 1.1 seconds; p < 0.05). Within INT, TUG improved 0.9 +/- 0.4 seconds; p = 0.01 and STS improved 3.0 +/- 0.9 seconds; p = 0.05). CONCLUSIONS The efficacy of this WBV intervention was established. Functional performance improvement after WBV may be attributed to a number of biological mechanisms that remain speculative. Further research is required to mechanistically understand the effects of WBV on older adults.

Collaboration


Dive into the Morgan D. Williams's collaboration.

Top Co-Authors

Avatar

David A. Opar

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Anthony Shield

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ryan Timmins

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Matthew N. Bourne

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Lorenzen

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Jack Hickey

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Nirav Maniar

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar

Nuala Dear

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Steven Duhig

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Ruddy

Australian Catholic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge