Anthony Smith
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony Smith.
Journal of Biological Chemistry | 2009
Dympna Harmey; Anthony Smith; Scott Simanski; Carole Zaki Moussa; Nagi G. Ayad
The anaphase promoting complex (APC) is an E3 ubiquitin ligase required for the metaphase-to-anaphase transition and mitotic exit. However, APC also plays roles in G1, where it is regulated by Cdh1, and APC activity has also been detected in differentiated and non-proliferating cells, suggesting that it may play roles outside the cell cycle. Here, we report that disrupting APCCdh1 activity inhibits neurite outgrowth of both PC12 pheochromocytoma cells and primary cerebellar granule cells. APCCdh1 activity dramatically increases as PC12 cells differentiate in response to nerve growth factor. Furthermore, a key target degraded by APCCdh1 following nerve growth factor treatment is the F-box protein Skp2, and APCCdh1-mediated destruction of Skp2 is essential for proper terminal differentiation of neuronal precursors.
Cell Cycle | 2007
Anthony Smith; Scott Simanski; Mohammad Fallahi; Nagi G. Ayad
The irreversible nature of mitotic entry is due to the activation of mitosis specific kinases such as cdk1/cyclin B. Cdk1/cyclin B induces activation of mitosis by promoting phosphatases while suppressing inhibitory factors such as the tyrosine kinase wee1. Since wee1 keeps cdk1/cyclin B inactive during the S and G2 phases, its activity must be down-regulated for mitotic progression to occur. One mechanism of suppressing wee1 activity is ubiquitin-dependent proteolysis. Cdk1/cyclin B1 phosphorylates wee1, targeting it for recognition by ubiquitin ligases and subsequent proteasomal degradation. One of the ubiquitin ligases promoting wee1 destruction during mitosis is the SCFβ-trcp complex. We demonstrate that this complex, and a second SCF complex containing the F-box protein Tome-1, regulate wee1 degradation during the S and G2 phases of the cell cycle. Therefore, redundant ubiquitin ligase activities promote efficient mitotic entry of eukaryotic cells.
Antimicrobial Agents and Chemotherapy | 2005
Anthony Smith; Peter R. Meyer; Deshratn Asthana; Margarita Ashman; Walter A. Scott
ABSTRACT Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3′-azido-3′-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [32P]ddAMP-terminated DNA primer/template gave rise to 32P-labeled adenosine 2′,3′-dideoxyadenosine 5′,5′′′−P1,P4-tetraphosphate (Ap4ddA), ddATP, Gp4ddA, and Ap3ddA, corresponding to the transfer of [32P]ddAMP to ATP, PPi, GTP, and ADP, respectively. Incubation with [32P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous 32P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PPi levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4+ or CD8+ T cells, while PPi was present at 7 to 15 μM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4+ or CD8+ T cells contained 1.4 to 2.7 mM ATP and 55 to 79 μM PPi. These cellular PPi concentrations are lower than previously reported; nonetheless, the PPi-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PPi-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.
Current Pharmaceutical Design | 2006
Anthony Smith; Walter A. Scott
Human immunodeficiency virus type 1 resistance to nucleoside reverse transcriptase inhibitors such as 3-azido-2, 3-dideoxythymidine (AZT) can arise through mutations in the coding region of reverse transcriptase (RT) that enhance the enzymes ability to remove the drug after it has been incorporated. This excision activity of HIV-1 RT has been well characterized in a number of in vitro systems. However, the in vitro findings do not provide a complete picture of the in vivo significance of this resistance mechanism. This review will attempt to bridge the gap between the in vitro observations and the in vivo environment by summarizing the fragmentary information that is available about the intracellular conditions that may influence drug excision in cell subpopulations that are infected by HIV-1. Topics that will be discussed include (a) intracellular compounds HIV-1 RT may use to remove chain terminators; (b) how dNTPs can affect excision activity and how these effects differ in different immune cell subpopulations; (c) the influence of HIV infection on excision activity--e.g., through immune activation of infected cells or through changes indirectly induced in cells that subsequently become infected; (d) intracellular conditions that favor selection for mutations that increase the excision-based resistance mechanism; (e) the importance of macrophages in the selection of resistance mutations. Understanding factors that control excision in the intracellular environment will greatly enhance our understanding of the process of selection for this class of drug resistance mutations and may open doors for the development of novel targets for antiviral therapy.
Bioorganic & Medicinal Chemistry Letters | 2012
Rong Jiang; Xinyi Song; Purva Bali; Anthony Smith; Claudia Ruiz Bayona; Li Lin; Michael D. Cameron; Patricia McDonald; Paul J. Kenny; Theodore M. Kamenecka
A series of orexin receptor antagonists was synthesized based on a substituted piperidine scaffold. Through traditional medicinal chemistry structure-activity relationships (SAR), installation of various groups at the 3-6-positions of the piperidine led to modest enhancement in receptor selectivity. Compounds were profiled in vivo for plasma and brain levels in order to identify candidates suitable for efficacy in a model of drug addiction.
Journal of Biological Chemistry | 2010
Laura Owens; Scott Simanski; Christopher J. Squire; Anthony Smith; Jeff Cartzendafner; Valerie Cavett; Jennifer Caldwell Busby; Trey K. Sato; Nagi G. Ayad
Cell cycle progression is dependent upon coordinate regulation of kinase and proteolytic pathways. Inhibitors of cell cycle transitions are degraded to allow progression into the subsequent cell cycle phase. For example, the tyrosine kinase and Cdk1 inhibitor Wee1 is degraded during G2 and mitosis to allow mitotic progression. Previous studies suggested that the N terminus of Wee1 directs Wee1 destruction. Using a chemical mutagenesis strategy, we report that multiple regions of Wee1 control its destruction. Most notably, we find that the activation domain of the Wee1 kinase is also required for its degradation. Mutations in this domain inhibit Wee1 degradation in somatic cell extracts and in cells without affecting the overall Wee1 structure or kinase activity. More broadly, these findings suggest that kinase activation domains may be previously unappreciated sites of recognition by the ubiquitin proteasome pathway.
Antimicrobial Agents and Chemotherapy | 2006
Peter R. Meyer; Anthony Smith; Suzanne E. Matsuura; Walter A. Scott
ABSTRACT Nucleoside reverse transcriptase inhibitors are an important class of drugs for treatment of human immunodeficiency virus type 1 (HIV-1) infection. Resistance to these drugs is often the result of mutations that increase the transfer of chain-terminating nucleotides from blocked DNA termini to a nucleoside triphosphate acceptor, resulting in the generation of an unblocked DNA chain and synthesis of a dinucleoside polyphosphate containing the chain-terminating deoxynucleoside triphosphate analogue. We have synthesized and purified several dinucleoside tetraphosphates (ddAp4ddA, ddCp4ddC, ddGp4ddG, ddTp4ddT, Ap4ddG, 2′(3′)-O-(N-methylanthraniloyl)-Ap4ddG, and AppNHppddG) and show that these compounds can serve as substrates for DNA chain elongation and termination resulting in inhibition of DNA synthesis. Thymidine analogue-resistant mutants of reverse transcriptase are up to 120-fold more sensitive to inhibition by these compounds than is wild-type enzyme. Drugs based on the dinucleoside tetraphosphate structure could delay or prevent the emergence of mutants with enhanced primer unblocking activity. In addition, such drugs could suppress the resistance phenotype of mutant HIV-1 that is present in individuals infected with resistant virus.
Assay and Drug Development Technologies | 2013
James E. Robinson; Anthony Smith; Emmanuel Sturchler; Sahba Tabrizifard; Theodore M. Kamenecka; Patricia McDonald
The galanin 3 receptor (GalR3) belongs to the large G protein-coupled receptor (GPCR) family of proteins. GalR3 and two other closely related receptors, GalR1 and GalR2, together with their endogenous ligand galanin, are involved in a variety of physiological and pathophysiological processes. GalR3 in particular has been strongly implicated in addiction and mood-related disorders such as anxiety and depression. It has been the target of many drug discovery programs within the pharmaceutical industry, but despite the significant resources and effort devoted to discovery of galanin receptor subtype selective small molecule modulators, there have been very few reports for the discovery of such molecules. GalR3 has proven difficult to enable in cell-based functional assays due to its apparent poor cell surface expression in recombinant systems. Here, we describe the generation of a modified GalR3 that facilitates its cell surface expression while maintaining wild-type receptor pharmacology. The modified GalR3 has been used to develop a high-throughput screening-compatible, cell-based, cAMP biosensor assay to detect selective small molecule modulators of GalR3. The performance of the assay has been validated by challenging it against a test library of small molecules with known pharmacological activities (LOPAC; Sigma Aldrich). This approach will enable identification of GalR3 selective modulators (chemical probes) that will facilitate dissection of the biological role(s) that GalR3 plays in normal physiological processes as well as in disease states.
Journal of Immunology | 2014
Anthony Smith; Stephen W. Wietgrefe; Liang Shang; Cavan Reilly; Peter J. Southern; Katherine E. Perkey; Lijie Duan; Heinz Kohler; Sybille Müller; James Robinson; John V. Carlis; Qingsheng Li; R. Paul Johnson; Ashley T. Haase
Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicenter in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer Ab production and neonatal FcR-mediated concentration of these Abs on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. In this study, we identify blocking CD4+ T cell recruitment to thereby inhibit local expansion of infected founder populations as a second correlate of protection. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex–FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine.
Journal of Molecular and Cellular Cardiology | 2007
Alok S. Pachori; Anthony Smith; Patricia McDonald; Lunan Zhang; Victor J. Dzau; Luis G. Melo