Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony T. Iavarone is active.

Publication


Featured researches published by Anthony T. Iavarone.


Science | 2010

c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response

Joshua J. Woodward; Anthony T. Iavarone; Daniel A. Portnoy

Bacterial (Interferon)ce Intracellular bacterial pathogens, such as Listeria monocytogenes, are detected in the cytosol of host immune cells, where they induce a host response that is often dependent on microbial secretion systems. Woodward et al. (p. 1703, published online 27 May) now show that L. monocytogenes produce and release cyclic diadenosine monophosphate into the host cytosol, which induces the production of host type I interferon. Because a number of intracellular pathogens contain the protein machinery to generate this nucleotide and also activate this same innate immune pathway, a common molecular mechanism may exist for host detection of cytosolic bacterial pathogens. Within the host cell, a small secondary signaling molecule from a pathogen triggers a pathway of innate immunity. Intracellular bacterial pathogens, such as Listeria monocytogenes, are detected in the cytosol of host immune cells. Induction of this host response is often dependent on microbial secretion systems and, in L. monocytogenes, is dependent on multidrug efflux pumps (MDRs). Using L. monocytogenes mutants that overexpressed MDRs, we identified cyclic diadenosine monophosphate (c-di-AMP) as a secreted molecule able to trigger the cytosolic host response. Overexpression of the di-adenylate cyclase, dacA (lmo2120), resulted in elevated levels of the host response during infection. c-di-AMP thus represents a putative bacterial secondary signaling molecule that triggers a cytosolic pathway of innate immunity and is predicted to be present in a wide variety of bacteria and archea.


Science | 2014

Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation.

Martin Jinek; Fuguo Jiang; David W. Taylor; Samuel H. Sternberg; Emine Kaya; Enbo Ma; Carolin Anders; Michael Hauer; Kaihong Zhou; Steven Lin; Matias Kaplan; Anthony T. Iavarone; Emmanuelle Charpentier; Eva Nogales; Jennifer A. Doudna

Introduction Bacteria and archaea defend themselves against invasive DNA using adaptive immune systems comprising CRISPR (clustered regularly interspaced short palindromic repeats) loci and CRISPR-associated (Cas) genes. In association with Cas proteins, small CRISPR RNAs (crRNAs) guide the detection and cleavage of complementary DNA sequences. Type II CRISPR systems employ the RNA-guided endonuclease Cas9 to recognize and cleave double-stranded DNA (dsDNA) targets using conserved RuvC and HNH nuclease domains. Cas9-mediated cleavage is strictly dependent on the presence of a protospacer adjacent motif (PAM) in the target DNA. Recently, the biochemical properties of Cas9–guide RNA complexes have been harnessed for various genetic engineering applications and RNA-guided transcriptional control. Despite these ongoing successes, the structural basis for guide RNA recognition and DNA targeting by Cas9 is still unknown. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. (A) Crystal structures of S. pyogenes (SpyCas9) and A. naeslundii (AnaCas9) Cas9 proteins. (B) Left: Negative-stain EM reconstructions of apo-SpyCas9 (top) and SpyCas9-RNA-target DNA complex (bottom) show that nucleic acid binding causes a reorientation of the nuclease (blue) and α-helical (gray) lobes in SpyCas9. Right: Cartoon representations of the structures. tracrRNA, trans-activating crRNA. Rationale To compare the architectures and domain organization of diverse Cas9 proteins, the atomic structures of Cas9 from Streptococcus pyogenes (SpyCas) and Actinomyces naeslundii (AnaCas9) were determined by x-ray crystallography. Crosslinking of target DNA containing 5-bromodeoxyuridines was conducted to identify PAM-interacting regions in SpyCas9. To test functional interactions with nucleic acid ligands, structure-based mutant SpyCas9 proteins were assayed for endonuclease activity with radiolabeled oligonucleotide dsDNA targets, and target DNA binding was monitored by electrophoretic mobility shift assays. To compare conformations of Cas9 in different states of nucleic acid binding, three-dimensional reconstructions of apo-SpyCas9, SpyCas9:RNA, and SpyCas9:RNA:DNA were obtained by negative-stain single-particle electron microscopy. Guide RNA and target DNA positions were determined with streptavidin labeling. Exonuclease protection assays were carried out to determine the extent of Cas9–target DNA interactions. Results The 2.6 Å–resolution structure of apo-SpyCas9 reveals a bilobed architecture comprising a nuclease domain lobe and an α-helical lobe. Both lobes contain conserved clefts that may function in nucleic acid binding. Photocrosslinking experiments show that the PAM in target DNA is engaged by two tryptophan-containing flexible loops, and mutations of both loops impair target DNA binding and cleavage. The 2.2 Å–resolution crystal structure of AnaCas9 reveals the conserved structural core shared by all Cas9 enzyme subtypes, and both SpyCas9 and AnaCas9 adopt autoinhibited conformations in their apo forms. The electron microscopic (EM) reconstructions of SpyCas9:RNA and SpyCas9:RNA:DNA complexes reveal that guide RNA binding results in a conformational rearrangement and formation of a central channel for target DNA binding. Site-specific labeling of guide RNA and target DNA define the orientations of nucleic acids in the target-bound complex. Conclusion The SpyCas9 and AnaCas9 structures define the molecular architecture of the Cas9 enzyme family in which a conserved structural core encompasses the two nuclease domains responsible for DNA cleavage, while structurally divergent regions, including the PAM recognition loops, are likely responsible for distinct guide RNA and PAM specificities. Cas9 enzymes adopt a catalytically inactive conformation in the apo state, necessitating structural activation for DNA recognition and cleavage. Our EM analysis shows that by triggering a conformational rearrangement in Cas9, the guide RNA acts as a critical determinant of target DNA binding. Cas9 Solved Clustered regularly interspaced short palindromic repeats (CRISPR)–associated (Cas) loci allow prokaryotes to identify and destroy invading DNA. Not only important to bacteria, the universal value of Cas endonuclease specificity has also resulted in Cas9 being exploited as a tool for genome editing. Jinek et al. (10.1126/science.1247997, published online 6 February) determined the 2.6 and 2.2 angstrom resolution crystal structures of two Cas9 enzymes to reveal a common structural core with distinct peripheral elaborations. The enzymes are autoinhibited, undergo large conformational changes on binding RNA, and have channels lined with basic residues that are candidates for an RNA-DNA binding groove. Based on these and other insights from the structures, this work provides important revelations both for the CRISPR mechanism and for genome editing. Binding of a guide RNA triggers structural changes in a set of DNA-cleaving enzymes. Type II CRISPR (clustered regularly interspaced short palindromic repeats)–Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA–induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa.

Chaoguang Tian; William T. Beeson; Anthony T. Iavarone; Jianping Sun; Michael A. Marletta; Jamie H. D. Cate; N. Louise Glass

The filamentous fungus Neurospora crassa is a model laboratory organism, but in nature is commonly found growing on dead plant material, particularly grasses. Using functional genomics resources available for N. crassa, which include a near-full genome deletion strain set and whole genome microarrays, we undertook a system-wide analysis of plant cell wall and cellulose degradation. We identified approximately 770 genes that showed expression differences when N. crassa was cultured on ground Miscanthus stems as a sole carbon source. An overlap set of 114 genes was identified from expression analysis of N. crassa grown on pure cellulose. Functional annotation of up-regulated genes showed enrichment for proteins predicted to be involved in plant cell wall degradation, but also many genes encoding proteins of unknown function. As a complement to expression data, the secretome associated with N. crassa growth on Miscanthus and cellulose was determined using a shotgun proteomics approach. Over 50 proteins were identified, including 10 of the 23 predicted N. crassa cellulases. Strains containing deletions in genes encoding 16 proteins detected in both the microarray and mass spectrometry experiments were analyzed for phenotypic changes during growth on crystalline cellulose and for cellulase activity. While growth of some of the deletion strains on cellulose was severely diminished, other deletion strains produced higher levels of extracellular proteins that showed increased cellulase activity. These results show that the powerful tools available in N. crassa allow for a comprehensive system level understanding of plant cell wall degradation mechanisms used by a ubiquitous filamentous fungus.


Journal of the American Chemical Society | 2010

Organelle-Targetable Fluorescent Probes for Imaging Hydrogen Peroxide in Living Cells via SNAP-Tag Protein Labeling

Duangkhae Srikun; Aaron E. Albers; Christine I. Nam; Anthony T. Iavarone; Christopher J. Chang

Hydrogen peroxide (H(2)O(2)) is a potent small-molecule oxidant that can exert a diverse array of physiological and/or pathological effects within living systems depending on the timing and location of its production, accumulation, trafficking, and consumption. To help study the chemistry and biology of this reactive oxygen species (ROS) in its native cellular context, we now present a new method for monitoring local, subcellular changes in H(2)O(2) levels by fluorescence imaging. Specifically, we have exploited the versatility of the SNAP-tag technology for site-specific protein labeling with small molecules on the surface or interior of living cells with the use of boronate-capped dyes to selectively visualize H(2)O(2). The resulting SNAP-Peroxy-Green (SNAP-PG) probes consist of appropriately derivatized boronates bioconjugated to SNAP-tag fusion proteins. Spectroscopic measurements of the SNAP-PG constructs confirm their ability to detect H(2)O(2) with specificity over other biologically relevant ROS. Moreover, these hybrid small-molecule/protein reporters can be used in live mammalian cells expressing SNAP-tag fusion proteins directed to the plasma membrane, nucleus, mitochondria, and endoplasmic reticulum. Imaging experiments using scanning confocal microscopy establish organelle-specific localization of the SNAP-tag probes and their fluorescence turn-on in response to changes in local H(2)O(2) levels. This work provides a general molecular imaging platform for assaying H(2)O(2) chemistry in living cells with subcellular resolution.


Journal of the American Society for Mass Spectrometry | 2000

Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization

Anthony T. Iavarone; John C. Jurchen; Evan R. Williams

The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing gas-phase basicities of these solvents, although other physical properties of these solvents may also play a role. The effect is relatively small for these solvents, possibly due to their limited concentration inside the electrospray interface. In contrast, the addition of even small amounts of diethylamine (<0.4%) results in dramatic shifts to lower charge, presumably due to preferential proton transfer from the higher charge state ions to diethylamine. These results clearly show that the maximum charge states and charge state distributions of ions formed by electrospray ionization are influenced by solvents that are more volatile than water. Addition of even small amounts of two solvents that are less volatile than water, ethylene glycol and 2-methoxyethanol, also results in preferential deprotonation of higher charge state ions of small peptides, but these solvents actually produce an enhancement in the higher charge state ions for both cytochrome c and myoglobin. For instruments that have capabilities that improve with lower m/z, this effect could be taken advantage of to improve the performance of an analysis.


Journal of the American Chemical Society | 2009

Chemoselective Tryptophan Labeling with Rhodium Carbenoids at Mild pH

John M. Antos; Jesse M. McFarland; Anthony T. Iavarone; Matthew B. Francis

Significant improvements have been made to a previously reported tryptophan modification method using rhodium carbenoids in aqueous solution, allowing the reaction to proceed at pH 6-7. This technique is based on the discovery that N-(tert-butyl)hydroxylamine promotes indole modification with rhodium carbenoids over a broad pH range (2-7). This methodology was demonstrated on peptide and protein substrates, generally yielding 40-60% conversion with excellent tryptophan chemoselectivity. The solvent accessibility of the indole side chains was found to be a key factor in successful carbenoid addition, as demonstrated by conducting the reaction at temperatures high enough to cause thermal denaturation of the protein substrate. Progress toward the expression of proteins bearing solvent accessible tryptophan residues as reactive handles for modification with rhodium carbenoids is also reported.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria

Hans K. Carlson; Anthony T. Iavarone; Amita Gorur; Boon Siang Yeo; Rosalie Tran; Ryan A. Melnyk; Richard A. Mathies; Manfred Auer; John D. Coates

Almost nothing is known about the mechanisms of dissimilatory metal reduction by Gram-positive bacteria, although they may be the dominant species in some environments. Thermincola potens strain JR was isolated from the anode of a microbial fuel cell inoculated with anaerobic digester sludge and operated at 55 °C. Preliminary characterization revealed that T. potens coupled acetate oxidation to the reduction of hydrous ferric oxides (HFO) or anthraquinone-2,6-disulfonate (AQDS), an analog of the redox active components of humic substances. The genome of T. potens was recently sequenced, and the abundance of multiheme c-type cytochromes (MHCs) is unusual for a Gram-positive bacterium. We present evidence from trypsin-shaving LC-MS/MS experiments and surface-enhanced Raman spectroscopy (SERS) that indicates the expression of a number of MHCs during T. potens growth on either HFO or AQDS, and that several MHCs are localized to the cell wall or cell surface. Furthermore, one of the MHCs can be extracted from cells with low pH or denaturants, suggesting a loose association with the cell wall or cell surface. Electron microscopy does not reveal an S-layer, and the precipitation of silver metal on the cell surface is inhibited by cyanide, supporting the involvement of surface-localized redox-active heme proteins in dissimilatory metal reduction. These results provide unique direct evidence for cell wall-associated cytochromes and support MHC involvement in conducting electrons across the cell envelope of a Gram-positive bacterium.


Journal of Proteome Research | 2011

Quantitative proteomic approach for cellulose degradation by Neurospora crassa.

Christopher Phillips; Anthony T. Iavarone; Michael A. Marletta

Conversion of plant biomass to soluble sugars is the primary bottleneck associated with production of economically viable cellulosic fuels and chemicals. To better understand the biochemical route that filamentous fungi use to degrade plant biomass, we have taken a quantitative proteomics approach to characterizing the secretome of Neurospora crassa during growth on microcrystalline cellulose. Thirteen proteins were quantified in the N. crassa secretome using a combination of Absolute Quantification (AQUA) and Absolute SILAC to verify protein concentrations. Four of these enzymes including 2 cellobiohydrolases (CBH-1 and GH6-2), an endoglucanase (GH5-1), and a β-glucosidase (GH3-4) were then chosen to reconstitute a defined cellulase mixture in vitro. These enzymes were assayed alone and in mixtures and the activity of the reconstituted set was then compared to the crude mixture of N. crassa secretome proteins. Results show that while these 4 proteins represent 63-65% of the total secretome by weight, they account for just 43% of the total activity on microcrystalline cellulose after 24 h of hydrolysis. This result and quantitative proteomic data on other less abundant proteins secreted by Neurospora suggest that proteins other than canonical fungal cellulases may play an important role in cellulose degradation by fungi.


International Journal of Mass Spectrometry | 2002

Supercharging in electrospray ionization: effects on signal and charge

Anthony T. Iavarone; Evan R. Williams

Abstract Multiply charged ions are ideally suited to tandem mass spectrometry, where fragmentation efficiency and pathways are typically a strong function of charge. Addition of either of two compounds, m -nitrobenzyl alcohol ( m -NBA) or glycerol, to electrospray solutions results in an increase in the number of charges that can be added to gas-phase protein cations. Overall electrospray ionization (ESI) signal is not adversely affected by adding these compounds. Thus, these charge enhancers work by increasing the absolute number of higher charge state ions. This ability to enhance charge appears to be related to the high surface tensions of these compounds. Electrospray droplets consisting of solvents with higher surface tension require additional charging at the droplet surface in order to undergo Rayleigh fission. During the ion formation process, the higher density of charge at the droplet surface translates into higher charge states of the gas-phase analyte ion. Addition of m -NBA also enhances formation of high charge states of negative ions. For the synthetic polymer, poly(ethylene glycol) (PEG), addition of m -NBA results in an increase in the charge states by increasing the cationization of the polymer. In contrast, addition of glycerol results in a decrease in the charge states, presumably because it competes for sodium ions due to its high sodium affinity. Addition of 1–20% m -NBA to electrospray solutions can enhance the formation of higher charge state ions with no reduction in overall electrospray signal for a wide variety of analyte ions. This appears to be an ideal compound for enhancing high charge states for MS/MS and other experiments for which high charge states are desired.


Molecular Cell | 2011

Regulation of Ubiquitin Chain Initiation to Control the Timing of Substrate Degradation

Adam Williamson; Sudeep Banerjee; Xining Zhu; Isabelle Philipp; Anthony T. Iavarone; Michael Rape

Processive reactions, such as transcription or translation, often proceed through distinct initiation and elongation phases. The processive formation of polymeric ubiquitin chains can accordingly be catalyzed by specialized initiating and elongating E2 enzymes, but the functional significance for this division of labor has remained unclear. Here, we have identified sequence motifs in several substrates of the anaphase-promoting complex (APC/C) that are required for efficient chain initiation by its E2 Ube2C. Differences in the quality and accessibility of these chain initiation motifs can determine the rate of a substrates degradation without affecting its affinity for the APC/C, a mechanism used by the APC/C to control the timing of substrate proteolysis during the cell cycle. Based on our results, we propose that initiation motifs and their cognate E2s allow E3 enzymes to exert precise temporal control over substrate degradation.

Collaboration


Dive into the Anthony T. Iavarone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Coates

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain C. Clark

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew B. Francis

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge