Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan R. Williams is active.

Publication


Featured researches published by Evan R. Williams.


Analytical Chemistry | 1996

Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation

William D. Price; Paul D. Schnier; Evan R. Williams

A new method for the dissociation of large ions formed by electrospray ionization is demonstrated. Ions trapped in a Fourier transform mass spectrometer at pressures below 10(-)(8) Torr are dissociated by elevating the vacuum chamber to temperatures up to 215 °C. Rate constants for dissociation are measured and found to be independent of pressure below 10(-)(7) Torr. This indicates that the ions are activated by absorption of blackbody radiation emitted from the chamber walls. Dissociation efficiencies as high as 100% are obtained. There is no apparent mass limit to this method; ions as large as ubiquitin (8.6 kDa) are readily dissociated. Thermally stable ions, such as melittin 3+ (2.8 kDa), did not dissociate at temperatures up to 200 °C. This method is highly selective for low-energy fragmentation, from which limited sequence information can be obtained. From the temperature dependence of the dissociation rate constants, Arrhenius activation energies in the low-pressure limit are obtained. The lowest energy dissociation processes for the singly and doubly protonated ions of bradykinin are loss of NH(3) and formation of the b(2)/y(7) complementary pair, with activation energies of 1.3 and 0.8 eV, respectively. No loss of NH(3) is observed for the doubly protonated ion; some loss of H(2)O occurs. These results show that charge-charge interactions not only lower the activation energy for dissociation but also can dramatically change the fragmentation, most likely through changes in the gas-phase conformation of the ion. Dissociation of ubiquitin ions produces fragmentation similar to that obtained by IRMPD and SORI-CAD. Higher charge state ions dissociate to produce y and b ions; the primary fragmentation process for low charge state ions is loss of H(2)O.


Journal of the American Society for Mass Spectrometry | 1995

On the maximum charge state and proton transfer reactivity of peptide and protein ions formed by electrospray ionization

Paul D. Schnier; Deborah S. Gross; Evan R. Williams

A relatively simple model for calculation of the energetics of gas-phase proton transfer reactions and the maximum charge state of multiply protonated ions formed by electrospray ionization is presented. This model is based on estimates of the intrinsic proton transfer reactivity of sites of protonation and point charge Coulomb interactions. From this model, apparent gas-phase basicities (GBapp) of multiply protonated ions are calculated. Comparison of this value to the gas-phase basicity of the solvent from which an ion is formed enables a maximum charge state to be calculated. For 13 commonly electrosprayed proteins, our calculated maximum charge states are within an average of 6% of the experimental values reported in the literature. This indicates that the maximum charge state for proteins is determined by their gas-phase reactivity. Similar results are observed for peptides with many basic residues. For peptides with few basic residues, we find that the maximum charge state is better correlated to the charge state in solution. For low charge state ions, we find that the most basic sites Arg, Lys, and His are preferentially protonated. A significant fraction of the less basic residues Pro, Trp, and Gln are protonated in high charge state ions. The calculated GBapp of individual protonation sites varies dramatically in the high charge state ions. From these values, we calculate a reduced cross section for proton transfer reactivity that is significantly lower than the Langevin collision frequency when the GBapp of the ion is approximately equal to the GB of the neutral base.


Journal of Molecular Biology | 2009

The Protective Antigen Component of Anthrax Toxin Forms Functional Octameric Complexes

Alexander F. Kintzer; Katie L. Thoren; Harry J. Sterling; Ken C. Dong; Geoffrey K. Feld; Iok I. Tang; Teri T. Zhang; Evan R. Williams; James M. Berger; Bryan A. Krantz

The assembly of bacterial toxins and virulence factors is critical to their function, but the regulation of assembly during infection has not been studied. We begin to address this question using anthrax toxin as a model. The protective antigen (PA) component of the toxin assembles into ring-shaped homooligomers that bind the two other enzyme components of the toxin, lethal factor (LF) and edema factor (EF), to form toxic complexes. To disrupt the host, these toxic complexes are endocytosed, such that the PA oligomer forms a membrane-spanning channel that LF and EF translocate through to enter the cytosol. Using single-channel electrophysiology, we show that PA channels contain two populations of conductance states, which correspond to two different PA pre-channel oligomers observed by electron microscopy-the well-described heptamer and a novel octamer. Mass spectrometry demonstrates that the PA octamer binds four LFs, and assembly routes leading to the octamer are populated with even-numbered, dimeric and tetrameric, PA intermediates. Both heptameric and octameric PA complexes can translocate LF and EF with similar rates and efficiencies. Here, we report a 3.2-A crystal structure of the PA octamer. The octamer comprises approximately 20-30% of the oligomers on cells, but outside of the cell, the octamer is more stable than the heptamer under physiological pH. Thus, the PA octamer is a physiological, stable, and active assembly state capable of forming lethal toxins that may withstand the hostile conditions encountered in the bloodstream. This assembly mechanism may provide a novel means to control cytotoxicity.


Journal of the American Society for Mass Spectrometry | 2000

Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization

Anthony T. Iavarone; John C. Jurchen; Evan R. Williams

The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing gas-phase basicities of these solvents, although other physical properties of these solvents may also play a role. The effect is relatively small for these solvents, possibly due to their limited concentration inside the electrospray interface. In contrast, the addition of even small amounts of diethylamine (<0.4%) results in dramatic shifts to lower charge, presumably due to preferential proton transfer from the higher charge state ions to diethylamine. These results clearly show that the maximum charge states and charge state distributions of ions formed by electrospray ionization are influenced by solvents that are more volatile than water. Addition of even small amounts of two solvents that are less volatile than water, ethylene glycol and 2-methoxyethanol, also results in preferential deprotonation of higher charge state ions of small peptides, but these solvents actually produce an enhancement in the higher charge state ions for both cytochrome c and myoglobin. For instruments that have capabilities that improve with lower m/z, this effect could be taken advantage of to improve the performance of an analysis.


Journal of Mass Spectrometry | 1996

Proton Transfer Reactivity of Large Multiply Charged Ions

Evan R. Williams

Charge-charge interactions dramatically influence the dissociation and proton transfer reactivity of large multiply protonated ions. In combination with tandem mass spectrometry, proton transfer reactions have been used to determine the charge state of an ion and to increase the effective mass resolution of electrospray ionization mass spectra. A model for the proton transfer reactivity of multiply protonated ions, in which protons are assigned to specific sites in an ion based on the intrinsic reactivity of the site and the sum of point-charge Coulomb interactions between charges, is discussed. In combination with experimentally measured rates of proton transfer to bases of known gas-phase basicity, information about the intramolecular electrostatic interactions, gas-phase ion conformation and maximum charge state of an ion produced by electrospray ionization can be obtained.


Journal of the American Chemical Society | 2008

Effects of Alkaline Earth Metal Ion Complexation on Amino Acid Zwitterion Stability: Results from Infrared Action Spectroscopy

Matthew F. Bush; Jos Oomens; Richard J. Saykally; Evan R. Williams

The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with divalent barium. The IRMPD spectra for these ions exhibit bands assigned to carboxylate stretching modes, spectral signatures for zwitterionic amino acids, and lack bands attributable to the carbonyl stretch of a carboxylic acid functional group. Structural and spectral assignments are strengthened through comparisons with absorbance spectra calculated for low-energy structures and the IRMPD spectra of analogous ions containing monovalent alkali metals. Many bands are significantly red-shifted from the corresponding bands for amino acids complexed with monovalent metal ions, owing to increased charge transfer to divalent metal ions. The IRMPD spectra of arginine complexed with divalent strontium and barium are very similar and indicate that arginine adopts a zwitterionic form in both ions. Calculations indicate that nonzwitterionic forms of arginine are lowest in free energy in complexes with smaller alkaline earth metal cations and that zwitterionic forms are preferentially stabilized with increasing metal ion size. B3LYP and MP2 calculations indicate that zwitterionic forms of arginine are lowest in free energy for M = Ca, Sr, and Ba.


Journal of the American Society for Mass Spectrometry | 2005

Multidimensional separations of ubiquitin conformers in the gas phase: Relating ion cross sections to H/D exchange measurements

Errol W. Robinson; Evan R. Williams

Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by <1%, yet H/D exchange of these conformers differ significantly (6 versus 25 exchanges). These and other results show that ubiquitin ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone.


Journal of the American Society for Mass Spectrometry | 2010

Effects of supercharging reagents on noncovalent complex structure in electrospray ionization from aqueous solutions.

Harry J. Sterling; Michael P. Daly; Geoffrey K. Feld; Katie L. Thoren; Alexander F. Kintzer; Bryan A. Krantz; Evan R. Williams

The effects of two supercharging reagents, m-nitrobenzyl alcohol (m-NBA) and sulfolane, on the charge-state distributions and conformations of myoglobin ions formed by electrospray ionization were investigated. Addition of 0.4% m-NBA to aqueous ammonium acetate solutions of myoglobin results in an increase in the maximum charge state from 9+ to 19+, and an increase in the average charge state from 7.9+ to 11.7+, compared with solutions without m-NBA. The extent of supercharging with sulfolane on a per mole basis is lower than that with m-NBA, but comparable charging was obtained at higher concentration. Arrival time distributions obtained from traveling wave ion mobility spectrometry show that the higher charge state ions that are formed with these supercharging reagents are significantly more unfolded than lower charge state ions. Results from circular dichroism spectroscopy show that sulfolane can act as chemical denaturant, destabilizing myoglobin by ∼1.5 kcal/mol/M at 25 °C. Because these supercharging reagents have low vapor pressures, aqueous droplets are preferentially enriched in these reagents as evaporation occurs. Less evaporative cooling will occur after the droplets are substantially enriched in the low volatility supercharging reagent, and the droplet temperature should be higher compared with when these reagents are not present. Protein unfolding induced by chemical and/or thermal denaturation in the electrospray droplet appears to be the primary origin of the enhanced charging observed for noncovalent protein complexes formed from aqueous solutions that contain these supercharging reagents, although other factors almost certainly influence the extent of charging as well.


Journal of the American Society for Mass Spectrometry | 2011

Protein Conformation and Supercharging with DMSO from Aqueous Solution

Harry J. Sterling; James S. Prell; Catherine A. Cassou; Evan R. Williams

The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3–5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.


International Journal of Mass Spectrometry | 2002

Supercharging in electrospray ionization: effects on signal and charge

Anthony T. Iavarone; Evan R. Williams

Abstract Multiply charged ions are ideally suited to tandem mass spectrometry, where fragmentation efficiency and pathways are typically a strong function of charge. Addition of either of two compounds, m -nitrobenzyl alcohol ( m -NBA) or glycerol, to electrospray solutions results in an increase in the number of charges that can be added to gas-phase protein cations. Overall electrospray ionization (ESI) signal is not adversely affected by adding these compounds. Thus, these charge enhancers work by increasing the absolute number of higher charge state ions. This ability to enhance charge appears to be related to the high surface tensions of these compounds. Electrospray droplets consisting of solvents with higher surface tension require additional charging at the droplet surface in order to undergo Rayleigh fission. During the ion formation process, the higher density of charge at the droplet surface translates into higher charge states of the gas-phase analyte ion. Addition of m -NBA also enhances formation of high charge states of negative ions. For the synthetic polymer, poly(ethylene glycol) (PEG), addition of m -NBA results in an increase in the charge states by increasing the cationization of the polymer. In contrast, addition of glycerol results in a decrease in the charge states, presumably because it competes for sodium ions due to its high sodium affinity. Addition of 1–20% m -NBA to electrospray solutions can enhance the formation of higher charge state ions with no reduction in overall electrospray signal for a wide variety of analyte ions. This appears to be an ideal compound for enhancing high charge states for MS/MS and other experiments for which high charge states are desired.

Collaboration


Dive into the Evan R. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan D. Leib

University of California

View shared research outputs
Top Co-Authors

Avatar

James S. Prell

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jos Oomens

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge