Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony V. Palumbo is active.

Publication


Featured researches published by Anthony V. Palumbo.


Applied and Environmental Microbiology | 2002

Spatial and resource factors influencing high microbial diversity in soil

Jizhong Zhou; Beicheng Xia; David S. Treves; Liyou Wu; Terry L. Marsh; Robert V. O'neill; Anthony V. Palumbo; James M. Tiedje

ABSTRACT To begin defining the key determinants that drive microbial community structure in soil, we examined 29 soil samples from four geographically distinct locations taken from the surface, vadose zone, and saturated subsurface using a small-subunit rRNA-based cloning approach. While microbial communities in low-carbon, saturated, subsurface soils showed dominance, microbial communities in low-carbon surface soils showed remarkably uniform distributions, and all species were equally abundant. Two diversity indices, the reciprocal of Simpson’s index (1/D) and the log series index, effectively distinguished between the dominant and uniform diversity patterns. For example, the uniform profiles characteristic of the surface communities had diversity index values that were 2 to 3 orders of magnitude greater than those for the high-dominance, saturated, subsurface communities. In a site richer in organic carbon, microbial communities consistently exhibited the uniform distribution pattern regardless of soil water content and depth. The uniform distribution implies that competition does not shape the structure of these microbial communities. Theoretical studies based on mathematical modeling suggested that spatial isolation could limit competition in surface soils, thereby supporting the high diversity and a uniform community structure. Carbon resource heterogeneity may explain the uniform diversity patterns observed in the high-carbon samples even in the saturated zone. Very high levels of chromium contamination (e.g., >20%) in the high-organic-matter soils did not greatly reduce the diversity. Understanding mechanisms that may control community structure, such as spatial isolation, has important implications for preservation of biodiversity, management of microbial communities for bioremediation, biocontrol of root diseases, and improved soil fertility.


Applied and Environmental Microbiology | 2001

Evaluation of PCR-Generated Chimeras, Mutations, and Heteroduplexes with 16S rRNA Gene-Based Cloning

Xiaoyun Qiu; Liyou Wu; Heshu Huang; Patrick E. McDonel; Anthony V. Palumbo; James M. Tiedje; Jizhong Zhou

ABSTRACT To evaluate PCR-generated artifacts (i.e., chimeras, mutations, and heteroduplexes) with the 16S ribosomal DNA (rDNA)-based cloning approach, a model community of four species was constructed from alpha, beta, and gamma subdivisions of the division Proteobacteriaas well as gram-positive bacterium, all of which could be distinguished by HhaI restriction digestion patterns. The overall PCR artifacts were significantly different among the three TaqDNA polymerases examined: 20% for Z-Taq, with the highest processitivity; 15% for LA-Taq, with the highest fidelity and intermediate processitivity; and 7% for the conventionally used DNA polymerase, AmpliTaq. In contrast to the theoretical prediction, the frequency of chimeras for both Z-Taq(8.7%) and LA-Taq (6.2%) was higher than that for AmpliTaq (2.5%). The frequencies of chimeras and of heteroduplexes for Z-Taq were almost three times higher than those of AmpliTaq. The total PCR artifacts increased as PCR cycles and template concentrations increased and decreased as elongation time increased. Generally the frequency of chimeras was lower than that of mutations but higher than that of heteroduplexes. The total PCR artifacts as well as the frequency of heteroduplexes increased as the species diversity increased. PCR artifacts were significantly reduced by using AmpliTaq and fewer PCR cycles (fewer than 20 cycles), and the heteroduplexes could be effectively removed from PCR products prior to cloning by polyacrylamide gel purification or T7 endonuclease I digestion. Based upon these results, an optimal approach is proposed to minimize PCR artifacts in 16S rDNA-based microbial community studies.


Applied and Environmental Microbiology | 2001

Simultaneous Recovery of RNA and DNA from Soils and Sediments

Richard A. Hurt; Xiaoyun Qiu; Liyou Wu; Yul Roh; Anthony V. Palumbo; James M. Tiedje; Jizhong Zhou

ABSTRACT Recovery of mRNA from environmental samples for measurement of in situ metabolic activities is a significant challenge. A robust, simple, rapid, and effective method was developed for simultaneous recovery of both RNA and DNA from soils of diverse composition by adapting our previous grinding-based cell lysis method (Zhou et al., Appl. Environ. Microbiol. 62:316–322, 1996) for DNA extraction. One of the key differences is that the samples are ground in a denaturing solution at a temperature below 0°C to inactivate nuclease activity. Two different methods were evaluated for separating RNA from DNA. Among the methods examined for RNA purification, anion exchange resin gave the best results in terms of RNA integrity, yield, and purity. With the optimized protocol, intact RNA and high-molecular-weight DNA were simultaneously recovered from 19 soil and stream sediment samples of diverse composition. The RNA yield from these samples ranged from 1.4 to 56 μg g of soil−1 dry weight), whereas the DNA yield ranged from 23 to 435 μg g−1. In addition, studies with the same soil sample showed that the DNA yield was, on average, 40% higher than that in our previous procedure and 68% higher than that in a commercial bead milling method. For the majority of the samples, the DNA and RNA recovered were of sufficient purity for nuclease digestion, microarray hybridization, and PCR or reverse transcription-PCR amplification.


Science | 2013

The Genetic Basis for Bacterial Mercury Methylation

Jerry M. Parks; Alexander Johs; Mircea Podar; Romain Bridou; Richard A. Hurt; Steven D. Smith; Stephen J. Tomanicek; Yun Qian; Steven D. Brown; Craig C. Brandt; Anthony V. Palumbo; Jeremy C. Smith; Judy D. Wall; Dwayne A. Elias; Liyuan Liang

Mercury Methylating Microbes Mercury (Hg) most commonly becomes bioavailable and enters the food web as the organic form methylmercury, where it induces acute toxicity effects that can be magnified up the food chain. But most natural and anthropogenic Hg exists as inorganic Hg2+ and is only transformed into methylmercury by anaerobic microorganisms—typically sulfur-reducing bacteria. Using comparative genomics, Parks et al. (p. 1332, published online 7 February; see the Perspective by Poulain and Barkay) identified two genes that encode a corrinoid and iron-sulfur proteins in six known Hg-methylating bacteria but were absent in nonmethylating bacteria. In two distantly related model Hg-methylating bacteria, deletion of either gene—or both genes simultaneously—reduced the ability for the bacteria to produce methylmercury but did not impair cellular growth. The presence of this two-gene cluster in several other bacterial and lineages for which genome sequences are available suggests the ability to produce methylmercury may be more broadly distributed in the microbial world than previously recognized. A two-gene cluster encodes proteins required for the production of the neurotoxin methylmercury in bacteria. [Also see Perspective by Poulain and Barkay] Methylmercury is a potent neurotoxin produced in natural environments from inorganic mercury by anaerobic bacteria. However, until now the genes and proteins involved have remained unidentified. Here, we report a two-gene cluster, hgcA and hgcB, required for mercury methylation by Desulfovibrio desulfuricans ND132 and Geobacter sulfurreducens PCA. In either bacterium, deletion of hgcA, hgcB, or both genes abolishes mercury methylation. The genes encode a putative corrinoid protein, HgcA, and a 2[4Fe-4S] ferredoxin, HgcB, consistent with roles as a methyl carrier and an electron donor required for corrinoid cofactor reduction, respectively. Among bacteria and archaea with sequenced genomes, gene orthologs are present in confirmed methylators but absent in nonmethylators, suggesting a common mercury methylation pathway in all methylating bacteria and archaea sequenced to date.


Ecology | 1991

Role of Nutrient Cycling and Herbivory in Regulating Periphyton Communities in Laboratory Streams

Patrick J. Mulholland; Alan D. Steinman; Anthony V. Palumbo; Jerry W. Elwood; David B. Kirschtel

In this study we examined the role of nutrient cycling and herbivory in regulating stream periphyton communities. Population, community, and ecosystem—level properties were studied in laboratory stream channels that had nutrient inputs reduced compared to channels where ambient nutrient levels were maintained. We reduced nutrient inputs in four of eight channels by recirculating 90% of the flow, whereas the other four channels received once—through flow of spring water. We examined the interaction between herbivory and nutrients by varying the number of snails (Elimia clavaeformis) among streams with different nutrient input (circulation) regimes. Reduction in nutrient input viar recirculation resulted in lower concentrations of nutrients in the water but did not result in significant differences in biomass, carbon fixation, or algal taxonomic composition. However, herbivory had large effects on these characteristics by reducing biomass and areal rates of carbon fixation and simplifying periphyton taxonom...


Applied and Environmental Microbiology | 2003

Molecular Diversity of Denitrifying Genes in Continental Margin Sediments within the Oxygen-Deficient Zone off the Pacific Coast of Mexico

Xueduan Liu; S.M. Tiquia; Gina Holguin; Liyou Wu; Stephen C. Nold; Allan H. Devol; Kuan Luo; Anthony V. Palumbo; James M. Tiedje; Jizhong Zhou

ABSTRACT To understand the composition and structure of denitrifying communities in the oxygen-deficient zone off the Pacific coast of Mexico, the molecular diversity of nir genes from sediments obtained at four stations was examined by using a PCR-based cloning approach. A total of 50 operational taxonomic units (OTUs) for nirK and 82 OTUs for nirS were obtained from all samples. Forty-four of the nirS clones and 31 of the nirK clones were sequenced; the levels of similarity of the nirS clones were 52 to 92%, and the levels of similarity of the nirS clones were 50 to 99%. The percentages of overlapping OTUs between stations were 18 to 30% for nirS and 5 to 8% for nirK. Sequence analysis revealed that 26% of the nirS clones were related to the nirS genes of Alcaligenes faecalis (80 to 94% similar) and Pseudomonas stutzeri (80 to 99%), whereas 3 to 31% of the nirK clones were closely related to the nirK genes of Pseudomonas sp. strain G-179 (98 to 99%), Bradyrhizobium japonicum (91%), Blastobacter denitrificans (83%), and Alcaligenes xylosoxidans (96%). The rest of the clones, however, were less than 80% similar to nirS and nirK sequences available in sequence databases. The results of a principal-component analysis (PCA) based on the percentage of OTUs and biogeochemical data indicated that the nitrate concentration and oxygen have an effect on the denitrifying communities. The communities at the stations in oxygen-deficient zones were more similar than the communities at the stations in the oxygenated zone. The denitrifying communities were more similar at the stations that were closer together and had similar nitrate levels. Also, the results of PCA based on biogeochemical properties suggest that geographic location and biogeochemical conditions, especially the nitrate and oxygen levels, appear to be the key factors that control the structure of denitrifying communities.


Applied and Environmental Microbiology | 2011

Sulfate-Reducing Bacterium Desulfovibrio desulfuricans ND132 as a Model for Understanding Bacterial Mercury Methylation

Cynthia C. Gilmour; Dwayne A. Elias; Amy M. Kucken; Steven D. Brown; Anthony V. Palumbo; Christopher W. Schadt; Judy D. Wall

ABSTRACT We propose the use of Desulfovibrio desulfuricans ND132 as a model species for understanding the mechanism of microbial Hg methylation. Strain ND132 is an anaerobic dissimilatory sulfate-reducing bacterium (DSRB), isolated from estuarine mid-Chesapeake Bay sediments. It was chosen for study because of its exceptionally high rates of Hg methylation in culture and its metabolic similarity to the lost strain D. desulfuricans LS, the only organism for which methylation pathways have been partially defined. Strain ND132 is an incomplete oxidizer of short-chain fatty acids. It is capable of respiratory growth using fumarate as an electron acceptor, supporting growth without sulfide production. We used enriched stable Hg isotopes to show that ND132 simultaneously produces and degrades methylmercury (MeHg) during growth but does not produce elemental Hg. MeHg produced by cells is mainly excreted, and no MeHg is produced in spent medium. Mass balances for Hg and MeHg during the growth of cultures, including the distribution between filterable and particulate phases, illustrate how medium chemistry and growth phase dramatically affect Hg solubility and availability for methylation. The available information on Hg methylation among strains in the genus Desulfovibrio is summarized, and we present methylation rates for several previously untested species. About 50% of Desulfovibrio strains tested to date have the ability to produce MeHg. Importantly, the ability to produce MeHg is constitutive and does not confer Hg resistance. A 16S rRNA-based alignment of the genus Desulfovibrio allows the very preliminary assessment that there may be some evolutionary basis for the ability to produce MeHg within this genus.


Applied and Environmental Microbiology | 2004

Microbial Diversity and Heterogeneity in Sandy Subsurface Soils

Jizhong Zhou; Beicheng Xia; Heshu Huang; Anthony V. Palumbo; James M. Tiedje

ABSTRACT Microbial community diversity and heterogeneity in saturated and unsaturated subsurface soils from Abbotts Pit in Virginia (1.57, 3.25, and 4.05 m below surface) and Dover Air Force Base in Delaware (6.00 and 7.50 m below surface) were analyzed using a culture-independent small-subunit (SSU) rRNA gene (rDNA)-based cloning approach. Four to six dominant operational taxonomic units (OTUs) were identified in 33 to 100 unique SSU rDNA clones (constituting about 40 to 50% of the total number of SSU rDNA clones in the clone library) from the saturated subsurface samples, whereas no dominant OTUs were observed in the unsaturated subsurface sample. Less than 10% of the clones among samples from different depths at the same location were identical, and the proportion of overlapping OTUs was lower for the samples that were vertically far apart than for adjacent samples. In addition, no OTUs were shared between the Abbotts Pit and Dover samples. The majority of the clones (80%) had sequences that were less than 5% different from those in the current databases. Phylogenetic analysis indicated that most of the bacterial clones were affiliated with members of the Proteobacteria family (90%), gram-positive bacteria (3%), and members of the Acidobacteria family (3%). Principal component analysis revealed that samples from different geographic locations were well separated and that samples from the same location were closely grouped together. In addition, the nonsaturated subsurface samples from Abbotts Pit clustered together and were well separated from the saturated subsurface soil sample. Finally, the overall diversity of the subsurface samples was much lower than that of the corresponding surface soil samples.


BMC Genomics | 2009

Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

Shihui Yang; Timothy J. Tschaplinski; Nancy L. Engle; Sue L. Carroll; Stanton L. Martin; Brian H. Davison; Anthony V. Palumbo; Miguel Rodriguez; Steven D. Brown

BackgroundZymomonas mobilis ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4s response to various stresses is understood poorly.ResultsIn this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point.Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (glk, zwf, pgl, pgk, and eno) and gene pdc, encoding a key enzyme leading to ethanol production, were at least 30-fold more abundant under anaerobic conditions in the stationary phase based on quantitative-PCR results. We also identified differentially expressed ZM4 genes predicted by The Institute for Genomic Research (TIGR) that were not predicted in the primary annotation.ConclusionHigh oxygen concentrations present during Z. mobilis fermentations negatively influence fermentation performance. The maximum specific growth rates were not dramatically different between aerobic and anaerobic conditions, yet oxygen did affect the physiology of the cells leading to the buildup of metabolic byproducts that ultimately led to greater differences in transcriptomic profiles in stationary phase.


Current Opinion in Biotechnology | 2002

Metabolomics and microarrays for improved understanding of phenotypic characteristics controlled by both genomics and environmental constraints.

Tommy J. Phelps; Anthony V. Palumbo; Alex S. Beliaev

Advances in our understanding of functional genomics are best addressed by integrative studies that include measurements of mRNA, proteins, and low molecular weight metabolites over time and varied conditions. Bioinformatics can then be used to relate this data to the genome. Current technology allows for comprehensive and rapid mRNA expression profiling and mass spectrophotometric measurement of low molecular weight intermediates and metabolic products. In prokaryotic organisms, this combination provides a potentially powerful tool for identifying gene function and regulatory networks even in the absence of a combined proteomic approach.

Collaboration


Dive into the Anthony V. Palumbo's collaboration.

Top Co-Authors

Avatar

Tommy J. Phelps

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven D. Brown

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Craig C. Brandt

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mircea Podar

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dwayne A. Elias

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Patrick J. Mulholland

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Christopher W. Schadt

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer J. Mosher

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge