Anthony Z. Tong
Acadia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony Z. Tong.
Waste Management | 2013
Kayleigh H. Brown; Avik J. Ghoshdastidar; Jillian Hanmore; James Frazee; Anthony Z. Tong
Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography - mass spectrometry (GC/MS) and inductively coupled plasma - mass spectrometry (ICP-MS) respectively. A decrease of more than 99% was achieved for a COD of 116g/L in the initial leachate. Ammonia was decreased from 2720mg/L to 0.046mg/L, while the nitrate concentration in the effluent rose to 710mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.
Environmental Research | 2012
Brian A. Crouse; Avik J. Ghoshdastidar; Anthony Z. Tong
Pharmaceuticals are designed to have physiological effects on target organisms. Their presence and effect in aquatic ecosystems in the Annapolis Valley in Nova Scotia is relatively unknown. Over-the-counter (OTC) and prescription drugs are continually introduced to aquatic ecosystems through treated sewage effluent outflows into rivers and other bodies of water. Fouracidic and two neutral pharmaceuticals were monitored in the effluents from nine sewage treatment plants in the Annapolis Valley and Halifax Regional Municipality (HRM) in Nova Scotia. Naproxen and ibuprofen, two highly used OTC drugs, were the most prominent and were detected at high ng/L to low μg/L levels. Caffeine, salicylic acid (a metabolite of acetylsalicylic acid) and cotinine were detected in the ng/L range. Warfarin was not detected above the detection limits. The urban sewage treatment plant in Mill Cove, HRM showed much higher concentrations of pharmaceuticals than rural facilities in the Annapolis Valley, despite the fact that more advanced facilities are used at the urban plant. Receiving waters both downstream and upstream from STP effluent outfalls were also studied, and trace levels of caffeine at several sites indicate some degree of pollution propagation into surrounding aquatic ecosystems.
Chemosphere | 2014
Jingxian Wang; Guoqiang Song; Aimin Li; Bernhard Henkelmann; Gerd Pfister; Anthony Z. Tong; Karl-Werner Schramm
SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources.
International Journal of Environmental Analytical Chemistry | 2010
Lisa Graham; Anthony Z. Tong; Gary Poole; Luyi Ding; Fu Ke; Daniel Wang; Gianni Caravaggio; Jean-Pierre Charland; Pamela MacDonald; Ajae Hall; Yu Cheng; Jeffrey R. Brook
Direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS) is a technique that is finding application in the characterisation of the semivolatile organic carbon fraction of ambient and combustion source particulate matter (PM) collected on filters. In this study, three DTD-GC-MS methods were assessed and compared to a conventional solvent extraction method for analysis of a mixture of target analytes in solution and of diesel PM collected on quartz filters. The target analytes included n-alkanes, hopanes, steranes and polycyclic aromatic hydrocarbons. This study showed that while the three DTD-GC-MS methods were generally comparable to the solvent extraction method, (1) the choice of calibration strategy and calibration materials has a significant impact on the measured accuracy of a method; (2) very large variations were seen in all methods for the more volatile compounds such as C10 to C13 n-alkanes and naphthalene; (3) accuracy, defined as difference from the known concentration of a liquid sample, ranged from 5% to 32%; (4) precision, defined as the relative standard deviation, ranged from 4% to 16%. The average difference of DTD-GC-MS results from the solvent extraction results for the diesel PM filters ranged from 20% to 40%. This difference was driven by the large number of target analytes present at relatively low concentrations (<25 pg/mm2) and their corresponding higher variability. Differences in performance among the compound classes were noted. Minimum detection limits for the DTD-GC-MS methods were on the order of 0.1 to 1 pg/mm2 and were as good as or better than those obtained for the solvent extraction method.
Journal of Environmental Quality | 2018
Mandy M. McConnell; Lisbeth Truelstrup Hansen; Kara D. Neudorf; Jenny L. Hayward; Rob Jamieson; Chris K. Yost; Anthony Z. Tong
The increasing prevalence of antibiotic resistance genes (ARGs) in the environment is problematic due to the risk of horizontal gene transfer and development of antibiotic resistant pathogenic bacteria. Using a suite of monitoring tools, this study aimed to investigate the sources of ARGs in a rural river system in Nova Scotia, Canada. The monitoring program specifically focused on the relative contribution of ARGs from a single tertiary-level wastewater treatment plant (WWTP) in comparison to contributions from the upgradient rural, sparsely developed, watershed. The overall gene concentration significantly ( < 0.05) increased downstream from the WWTP, suggesting that tertiary-level treatment still contributes ARGs to the environment. As a general trend, ARG concentrations upstream were found to decrease as proximity to human-impacted areas decreased; however, many ARGs remained above detection limits in headwater river samples, which suggested their ubiquitous presence in this watershed in the absence of obvious pollution sources. Significant correlations with ARGs were found for human fecal marker, and some antibiotics, suggesting that these markers may be useful for prediction and understanding of ARG levels and sources in rural rivers.
Journal of Physical Chemistry A | 2011
Graham D. Reid; M.D. Robertson; Anthony Z. Tong
Current phase-shift cavity ring-down spectroscopy (PS-CRDS) experiments make use of equations originally developed for fluorescence studies. As these equations fail to take the length of the optical cavity and the superposition of reflecting beams into account, they lose validity as the length of the cavity increases. A new set of equations, based solely on the principles of PS-CRDS, is developed for determining the ring-down time from either the phase shift or the intensity of the waveform exiting the cavity. It is shown that the PS-CRDS equations reduce to those developed for fluorescence study for short cavities. The new equations provide a more accurate method in determining the characteristic ring-down time and phase shift for long cavities, especially fiber optic cavities, which is promising in on-site chemical sensing.
Science of The Total Environment | 2018
Mandy M. McConnell; Lisbeth Truelstrup Hansen; Rob Jamieson; Kara D. Neudorf; Christopher K. Yost; Anthony Z. Tong
Raw wastewater can contain high levels of antibiotic resistance genes (ARGs), making municipal wastewater treatment plants (WWTPs) critical for the control of the release of ARGs into the environment. The objective of this study was to investigate how individual treatment steps in two tertiary WWTPs affected the removal (copies/mL) and relative abundance of ARGs (copies/copies 16S rRNA genes). Nine ARG markers, representing resistance to commonly used antibiotics, as well as one integron gene (intl1) to assess ARG mobility potential, were quantified using quantitative real-time PCR (qPCR). Both WWTPs met provincial effluent regulations for removal of carbonaceous oxygen demand (CBOD5) and total suspended solids. Eight of the ten ARG markers (intl1, sul1, sul2, tet(O), ermB, blaCTX-M, blaTEM, qnrS) were detected in all samples. In contrast, mecA was detected intermittently and vanA remained below the detection limit in all samples. The total ARG marker abundances decreased by log 1.77 (p < 0.05) in the plant using an aerated lagoon (AL), and by 2.69 logs (p < 0.05) through treatment in the plant employing a biological nutrient removal (BNR) system. The BNR and secondary clarifier steps in both plants afforded the most removal of ARGs. The relative abundance of ARGs remained unchanged at the AL plant and showed a decreasing trend at the BNR plant. Levels of CBOD5, nitrate and the human Bacteroides fecal marker correlated with ARG concentrations, suggesting these variables may be useful in predicting ARG removal. In conclusion, the effluent coming from the WWTPs contained eight of the studied ARG markers in concentrations ranging from 0.01 to 3.6 log copies/mL, indicating their release into the environment, however, the relative abundance of ARGs was not enriched during treatment in the two WWTPs.
Environmental Science and Pollution Research | 2015
Avik J. Ghoshdastidar; Shannon Fox; Anthony Z. Tong
Environmental Science and Pollution Research | 2013
Avik J. Ghoshdastidar; Anthony Z. Tong
Journal of Chromatographic Science | 2011
Jasmine S. Lomond; Anthony Z. Tong