Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher K. Yost is active.

Publication


Featured researches published by Christopher K. Yost.


Molecular Microbiology | 2007

The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation

Lance D. Miller; Christopher K. Yost; Michael F. Hynes; Gladys Alexandre

Rhizobium leguminosarum biovar viciae strain 3841 is a motile alpha‐proteobacterium that can establish a nitrogen‐fixing symbiosis within the roots of pea plants. In order to determine the contribution of chemotaxis to the lifestyle of R. leguminosarum, we have characterized the function of two chemotaxis gene clusters (che1 and che2) in controlling motility behaviour. We have found that both chemotaxis gene clusters modulate the motility swimming bias of R. leguminosarum cells and that the che1 cluster is the major pathway controlling swimming bias and chemotaxis. The che2 cluster also contributes to swimming bias, but has a minor effect on chemotaxis. Using competitive nodulation assays, we have demonstrated that a functional che1 cluster, but not the che2 cluster, promotes competitive nodulation of the peas. This finding implies that the environmental cue(s) triggering chemotaxis of R. leguminosarum bv. viciae cells towards the roots of pea and facilitating colonization are likely to be processed through the che1 cluster despite the contribution of both che clusters to swimming behaviour. A phylogenetic analysis of the distribution of che1 and che2 orthologues in the alpha‐proteobacteria together with our results allow us to propose that che1 homologues are major controllers of chemotaxis and host association in the Rhizobiaceae.


Journal of Bacteriology | 2000

Megaplasmid pRme2011a of Sinorhizobium meliloti Is Not Required for Viability

Ivan J. Oresnik; Shu-Lin Liu; Christopher K. Yost; Michael F. Hynes

We report the curing of the 1,360-kb megaplasmid pRme2011a from Sinorhizobium meliloti strain Rm2011. With a positive selection strategy that utilized Tn5B12-S containing the sacB gene, we were able to cure this replicon by successive rounds of selecting for deletion formation in vivo. Subsequent Southern blot, Eckhardt gel, and pulsed-field gel electrophoresis analyses were consistent with the hypothesis that the resultant strain was indeed missing pRme2011a. The cured derivative grew as well as the wild-type strain in both complex and defined media but was unable to use a number of substrates as a sole source of carbon on defined media.


Molecular Plant-microbe Interactions | 1998

Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii : Evidence for a plant-inducible rhamnose locus involved in competition for nodulation

Ivan J. Oresnik; Laurie A. Pacarynuk; Shelley A. P. O'Brien; Christopher K. Yost; Michael F. Hynes

Cosmids carrying genes involved in utilization of rhamnose, sorbitol, and adonitol were isolated from a genomic library of Rhizobium leguminosarum by complementation of plasmid-cured derivatives of strain Rlt100 that were unable to grow on these carbon sources. Transposon mutagenesis was used to identify regions of each cosmid necessary for catabolism of the respective carbon source; partial DNA sequencing, as well as analysis of gene fusions created with transposon Tn5-B20, helped to determine the orientation and possible function of genes required for growth on the three substrates. Representative Tn5 insertions in the cosmids were recombined into the wild-type strain Rlt100 by gene replacement to generate isogenic strains unable to use either rhamnose, sorbitol, or adonitol. These strains were tested for their nodulation competitiveness compared with Rlt100 in co-inoculation experiments on clover plants. While sorbitol and adonitol catabolic mutants were unaltered in their competitive behavior, the nod...


FEMS Microbiology Ecology | 2010

Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841

Elizabeth M. Vanderlinde; Joe J. Harrison; Artur Muszyński; Russell W. Carlson; Raymond J. Turner; Christopher K. Yost

Rhizobium leguminosarum is a soil bacterium with the ability to form nitrogen-fixing nodules on the roots of leguminous plants. Soil-dwelling, free-living R. leguminosarum often encounters desiccation stress, which impacts its survival within the soil. The mechanisms by which soil bacteria resist the effects of desiccation stress have been described. However, the role of the cell envelope in the desiccation tolerance mechanisms of rhizobia is relatively uncharacterized. Using a transposon mutagenesis approach, a mutant of R. leguminosarum bv. viciae was isolated that was highly sensitive to desiccation. The mutation is located in the ATP-binding protein of an uncharacterized ATP-binding cassette transporter operon (RL2975-RL2977). Exopolysaccharide accumulation was significantly lower in the mutant and the decrease in desiccation tolerance was attributed to the decreased accumulation of exopolysaccharide. In addition to desiccation sensitivity, the mutant was severely impaired in biofilm formation, an important adaptation used by soil bacteria for survival. This work has identified a novel transporter required for physiological traits that are important for the survival of R. leguminosarum in the rhizosphere environment.


Microbiology | 1998

Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins

Christopher K. Yost; Patrice Rochepeau; Michael F. Hynes

Methyl-accepting chemotaxis proteins (MCPs) play important roles in the chemotactic response of many bacteria. Oligonucleotide primers designed to amplify the conserved signalling domain of MCPs by PCR were used to identify potential MCP-encoding genes in Rhizobium leguminosarum. Using a PCR-derived probe created from these primers a genomic library of R. leguminosarum VF39SM was screened; at least five putative MCP-encoding genes (termed mcpB to mcpF) were identified and isolated from the library. One of these putative genes (mcpC) is located on one of the indigenous plasmids of VF39SM. Fifteen different cosmids showing homology to an mcpD probe were also isolated from a genomic library. The complete DNA sequences of mcpB, mcpC and mcpD were obtained. All three genes code for proteins with characteristics typical of MCPs. However, the protein encoded by mcpB has a relatively large periplasmic domain compared to that in other MCPs. Partial DNA sequences of mcpE and mcpF had strong similarity to sequences from the methylation domains of known MCPs. Mutants defective in mcpB, mcpC, mcpD or mcpE were created using insertional mutagenesis strategies. Mutation of mcpB resulted in impairment of chemotaxis to a wide range of carbon sources on swarm plates; phenotypes for the other three mutants have yet to be elucidated. The mcpB, mcpC and mcpD mutants were tested for loss of nodulation competitiveness. When co-inoculated with the wild-type, the mcpB and mcpC mutants formed fewer nodules than the wild-type, whereas the mcpD mutant was just as competitive as the wild-type. The results overall suggest that R. leguminosarum possesses mcp-like genes, and that at least some of these play a role in early steps in the plant-microbe interaction.


Fems Microbiology Letters | 2010

Characterization of swarming motility in Rhizobium leguminosarum bv. viciae

Dinah D. Tambalo; Christopher K. Yost; Michael F. Hynes

We have characterized swarming motility in Rhizobium leguminosarum strains 3841 and VF39SM. Swarming was dependent on growth on energy-rich media, and both agar concentration and incubation temperature were critical parameters for surface migration. A cell density-dependent lag period was observed before swarming motility was initiated. Surface migration began 3-5 days after inoculation and a full swarming phenotype was observed 3 weeks after inoculation. The swarming front was preceded by a clear extracellular matrix, from which we failed to detect surfactants. The edge of the swarming front formed by VF39SM was characterized by hyperflagellated cells arranged in rafts, whereas the cells at the point of inoculation were indistinguishable from vegetative cells. Swarmer cells formed by 3841, in contrast, showed a minor increase in flagellation, with each swarmer cell exhibiting an average of three flagellar filaments, compared with an average of two flagella per vegetative cell. Reflective of their hyperflagellation, the VF39SM swarmer cells demonstrated an increased expression of flagellar genes. VF39SM swarmed better than 3841 under all the conditions tested, and the additional flagellation in VF39SM swarm cells may contribute to this difference. Metabolism of the supplemented carbon source appeared to be necessary for surface migration as strains incapable of utilizing the carbon source failed to swarm. We also observed that swarmer cells have increased resistance to several antibiotics.


Journal of Bacteriology | 2012

Mutation of the Sensor Kinase chvG in Rhizobium leguminosarum Negatively Impacts Cellular Metabolism, Outer Membrane Stability, and Symbiosis

Elizabeth M. Vanderlinde; Christopher K. Yost

Two-component signal transduction systems (TCS) are a main strategy used by bacteria to sense and adapt to changes in their environment. In the legume symbiont Rhizobium leguminosarum biovar viciae VF39, mutation of chvG, a histidine kinase, caused a number of pleiotropic phenotypes. ChvG mutants are unable to grow on proline, glutamate, histidine, or arginine as the sole carbon source. The chvG mutant secreted smaller amounts of acidic and neutral surface polysaccharides and accumulated abnormally large amounts of poly-ß-hydroxybutyrate. Mutation of chvG caused symbiotic defects on peas, lentils, and vetch; nodules formed by the chvG mutant were small and white and contained only a few cells that had failed to differentiate into bacteroids. Mutation of chvG also destabilized the outer membrane of R. leguminosarum, resulting in increased sensitivity to membrane stressors. Constitutive expression of ropB, the outer membrane protein-encoding gene, restored membrane stability and rescued the sensitivity phenotypes described above. Similar phenotypes have been described for mutations in other ChvG-regulated genes encoding a conserved operon of unknown function and in the fabXL genes required for synthesis of the lipid A very-long-chain fatty acid, suggesting that ChvG is a key component of the envelope stress response in Rhizobium leguminosarum. Collectively, the results of this study demonstrate the important and unique role the ChvG/ChvI TCS plays in the physiology, metabolism, and symbiotic competency of R. leguminosarum.


Journal of Bacteriology | 2010

Characterization of a Gene Family of Outer Membrane Proteins (ropB) in Rhizobium leguminosarum bv. viciae VF39SM and the Role of the Sensor Kinase ChvG in Their Regulation

Dallas L. Foreman; Elizabeth M. Vanderlinde; Denise C. Bay; Christopher K. Yost

The outer membrane of Gram-negative bacteria represents the interface between the bacterium and its external environment. It has a critical role as a protective barrier against harmful substances and is also important in host-bacteria interactions representing the initial physical point of contact between the host cell and bacterial cell. RopB is a previously identified outer membrane protein from Rhizobium leguminosarum bv. viciae that is present in free-living cells but absent in bacteroids (H. P. Roest, I. H. Mulders, C. A. Wijffelman, and B. J. Lugtenberg, Mol. Plant Microbe Interact. 8:576-583, 1995). The functions of RopB and the molecular mechanisms of ropB gene regulation have remained unknown. We identified and cloned ropB and two homologs (ropB2 and ropB3) from the R. leguminosarum VF39SM genome. Reporter gene fusions indicated that the expression of ropB was 8-fold higher when cells were grown in complex media than when they were grown in minimal media, while ropB3 expression was constitutively expressed at low levels in both complex and minimal media. Expression of ropB2 was negligible under all conditions tested. The use of minimal media supplemented with various sources of peptides resulted in a 5-fold increase in ropB expression. An increase in ropB expression in the presence of peptides was not observed in a chvG mutant background, indicating a role for the sensor kinase in regulating ropB expression. Each member of the ropB gene family was mutated using insertional mutagenesis, and the mutants were assayed for susceptibility to antimicrobial agents and symbiotic phenotypes. All mutants formed effective nodules on pea plants, and gene expression for each rop gene in bacteroids was negligible. The functions of ropB2 and ropB3 remain cryptic, while the ropB mutant had an increased sensitivity to detergents, hydrophobic antibiotics, and weak organic acids, suggesting a role for RopB in outer membrane stability.


Journal of Bacteriology | 2011

Mutation of a Broadly Conserved Operon (RL3499-RL3502) from Rhizobium leguminosarum Biovar viciae Causes Defects in Cell Morphology and Envelope Integrity

Elizabeth M. Vanderlinde; Samantha A. Magnus; Dinah D. Tambalo; Susan F. Koval; Christopher K. Yost

The bacterial cell envelope is of critical importance to the function and survival of the cell; it acts as a barrier against harmful toxins while allowing the flow of nutrients into the cell. It also serves as a point of physical contact between a bacterial cell and its host. Hence, the cell envelope of Rhizobium leguminosarum is critical to cell survival under both free-living and symbiotic conditions. Transposon mutagenesis of R. leguminosarum strain 3841 followed by a screen to isolate mutants with defective cell envelopes led to the identification of a novel conserved operon (RL3499-RL3502) consisting of a putative moxR-like AAA(+) ATPase, a hypothetical protein with a domain of unknown function (designated domain of unknown function 58), and two hypothetical transmembrane proteins. Mutation of genes within this operon resulted in increased sensitivity to membrane-disruptive agents such as detergents, hydrophobic antibiotics, and alkaline pH. On minimal media, the mutants retain their rod shape but are roughly 3 times larger than the wild type. On media containing glycine or peptides such as yeast extract, the mutants form large, distorted spheres and are incapable of sustained growth under these culture conditions. Expression of the operon is maximal during the stationary phase of growth and is reduced in a chvG mutant, indicating a role for this sensor kinase in regulation of the operon. Our findings provide the first functional insight into these genes of unknown function, suggesting a possible role in cell envelope development in Rhizobium leguminosarum. Given the broad conservation of these genes among the Alphaproteobacteria, the results of this study may also provide insight into the physiological role of these genes in other Alphaproteobacteria, including the animal pathogen Brucella.


Journal of Applied Microbiology | 2012

Characterization of a mobile and multiple resistance plasmid isolated from swine manure and its detection in soil after manure application.

Teddie O. Rahube; Christopher K. Yost

Aims:  To isolate and characterize multiple antibiotic resistance plasmids found in swine manure and test for plasmid‐associated genetic markers in soil following manure application to an agricultural field.

Collaboration


Dive into the Christopher K. Yost's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge