Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antimo Gioiello is active.

Publication


Featured researches published by Antimo Gioiello.


Cell Metabolism | 2009

TGR5-mediated bile acid sensing controls glucose homeostasis.

Charles Thomas; Antimo Gioiello; Lilia G. Noriega; Axelle Strehle; Julien Oury; Giovanni Rizzo; Antonio Macchiarulo; Hiroyasu Yamamoto; Chikage Mataki; Mark Pruzanski; Roberto Pellicciari; Johan Auwerx; Kristina Schoonjans

TGR5 is a G protein-coupled receptor expressed in brown adipose tissue and muscle, where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of-function studies in vivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization. Altogether, these data show that the TGR5 signaling pathway is critical in regulating intestinal GLP-1 secretion in vivo, and suggest that pharmacological targeting of TGR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.


Journal of Medicinal Chemistry | 2008

Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies.

Hiroyuki Sato; Antonio Macchiarulo; Charles Thomas; Antimo Gioiello; Mizuho Une; Alan F. Hofmann; Régis Saladin; Kristina Schoonjans; Roberto Pellicciari; Johan Auwerx

TGR5, a metabotropic receptor that is G-protein-coupled to the induction of adenylate cyclase, has been recognized as the molecular link connecting bile acids to the control of energy and glucose homeostasis. With the aim of disclosing novel selective modulators of this receptor and at the same time clarifying the molecular basis of TGR5 activation, we report herein the biological screening of a collection of natural occurring bile acids, bile acid derivatives, and some steroid hormones, which has resulted in the discovery of new potent and selective TGR5 ligands. Biological results of the tested collection of compounds were used to extend the structure-activity relationships of TGR5 agonists and to develop a binary classification model of TGR5 activity. This model in particular could unveil some hidden properties shared by the molecular shape of bile acids and steroid hormones that are relevant to TGR5 activation and may hence be used to address the design of novel selective and potent TGR5 agonists.


Cell Metabolism | 2011

TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading

Thijs Willem Hendrik Pols; Mitsunori Nomura; Taoufiq Harach; Giuseppe Lo Sasso; Maaike H. Oosterveer; Charles Thomas; Giovanni Rizzo; Antimo Gioiello; Luciano Adorini; Roberto Pellicciari; Johan Auwerx; Kristina Schoonjans

The G protein-coupled receptor TGR5 has been identified as an important component of the bile acid signaling network, and its activation has been linked to enhanced energy expenditure and improved glycemic control. Here, we demonstrate that activation of TGR5 in macrophages by 6α-ethyl-23(S)-methylcholic acid (6-EMCA, INT-777), a semisynthetic BA, inhibits proinflammatory cytokine production, an effect mediated by TGR5-induced cAMP signaling and subsequent NF-κB inhibition. TGR5 activation attenuated atherosclerosis in Ldlr(-/-)Tgr5(+/+) mice but not in Ldlr(-/-)Tgr5(-/-) double-knockout mice. The inhibition of lesion formation was associated with decreased intraplaque inflammation and less plaque macrophage content. Furthermore, Ldlr(-/-) animals transplanted with Tgr5(-/-) bone marrow did not show an inhibition of atherosclerosis by INT-777, further establishing an important role of leukocytes in INT-777-mediated inhibition of vascular lesion formation. Taken together, these data attribute a significant immune modulating function to TGR5 activation in the prevention of atherosclerosis, an important facet of the metabolic syndrome.


Journal of Medicinal Chemistry | 2009

Discovery of 6α-ethyl-23(S)-methylcholic Acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity.

Roberto Pellicciari; Antimo Gioiello; Antonio Macchiarulo; Charles Thomas; Emiliano Rosatelli; Benedetto Natalini; Roccaldo Sardella; Mark Pruzanski; Aldo Roda; Elisabetta Pastorini; Kristina Schoonjans; Johan Auwerx

In the framework of the design and development of TGR5 agonists, we reported that the introduction of a C(23)(S)-methyl group in the side chain of bile acids such as chenodeoxycholic acid (CDCA) and 6-ethylchenodeoxycholic acid (6-ECDCA, INT-747) affords selectivity for TGR5. Herein we report further lead optimization efforts that have led to the discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a novel potent and selective TGR5 agonist with remarkable in vivo activity.


Molecular Pharmacology | 2006

The Farnesoid X Receptor Promotes Adipocyte Differentiation and Regulates Adipose Cell Function in Vivo

Giovanni Rizzo; Moises Disante; Andrea Mencarelli; Barbara Renga; Antimo Gioiello; Roberto Pellicciari; Stefano Fiorucci

The differentiation of a preadipocyte into a mature adipocyte is a highly regulated process that requires a scripted program of transcriptional events leading to changes in gene expression. Several genes are associated with adipogenesis, including the CAAT/enhancer-binding protein (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) families of transcription factors. In this study, we have investigated the role of the farnesoid X receptor (FXR), a bile acid-activated nuclear receptor, in regulating adipogenesis in a preadipocyte cell line (3T3-L1 cells). Our results show that FXR is expressed in the white adipose tissue of adult mice and in differentiated 3T3-L1 cells but not in undifferentiated preadipocytes. Exposure of 3T3-L1 cells to INT-747 (6-ethyl cheno-deoxycholic acid), a potent and selective FXR ligand, increases preadipocyte differentiation induced by a differentiating mixture containing insulin. Augmentation of differentiating mixture-induced differentiation of 3T3-L1 cells by INT-747 associated with induction of aP2, C/EBPα, and PPARγ2 mRNAs along with other adipocyte-related genes. This effect was reversed by guggulsterone, an FXR antagonist, and partially reverted by GW9662 (2-chloro-5-nitro-N-phenylbenzamide), a selective PPARγ antagonist, indicating that FXR modulates adipocyte-related genes by PPARγ-dependent and -independent pathways. Regulation of adipocyte-related genes by INT-747 was lost in FXR-/- mice, indicating that modulation of these genes by INT-747 requires an intact FXR. In addition, INT-747 enhances both insulin-induced serine phosphorylation of Akt and glucose uptake by 3T3-L1 cells. Taken together, these results suggest that activation of FXR plays a critical role in regulating adipogenesis and insulin signaling.


Journal of Pharmaceutical and Biomedical Analysis | 2014

Determination of bile salt critical micellization concentration on the road to drug discovery.

Benedetto Natalini; Roccaldo Sardella; Antimo Gioiello; Federica Ianni; Alessandro Di Michele; Maura Marinozzi

With the discovery of the bile acid (BA)-activated nuclear and membrane receptors, the role of BAs as signalling molecules in important paracrine and endocrine networks has been fully documented in the last decade. Besides regulating their own synthesis and transport, BAs have been demonstrated being involved in triggering the adaptive response to cholestasis and other insults to liver. More to the point, their recognized ability to control the general energy-related metabolism and inflammation processes has contributed to justify the renewed interest towards this class of amphiphilic steroidal compounds. All these evidences feed a continuing interest in the BA research aimed at designing and synthesizing new side chain- and body-modified derivatives endowed with improved biological and physico-chemical profiles, as well as with proper ADMET behaviour. In this context, the micellar aggregation of BAs, and the respective critical micellization concentration (CMC) value (determined on the BA sodium salt, BS), is considered a key parameter that needs to be determined in the preliminary phase of compound characterization, being implicated in cytotoxicity issues. An extraordinary variety of different analytical techniques and methods have been proposed along the years with the aim of better identifying the start of the self-aggregation process of BS monomers. The unicity of the physico-chemical nature of such class of compounds can be invoked to explain this unusual interest. Accordingly, a number of both invasive and non-invasive approaches have been developed along with a limited number of indirect chromatographic-based estimation strategies. Worth to be mentioned among the non-invasive determination methods are those based on potentiometry, freezing point depression, surface tension, nuclear magnetic resonance, viscosimetry, turbidimetry, microcalorimetry, refractometry, conductimetry, spectrophotometry, cholesterol solubilization, and monoglucuronide solubilization. Dye solubilization- and fluorescence-based methods deserve instead credit among the invasive methodological approaches. Indirect chromatographic methods based on capillary electrophoresis and high performance liquid chromatography analysis also demonstrated to be profitably exploited for the CMC estimation, especially when a small amount of sample is available. The collection of literature data reveals that the CMC value of a given BS is markedly related to the method selected for determining it as well as to the experimental conditions applied during the analysis.


Expert Opinion on Therapeutic Patents | 2012

Patented TGR5 modulators: a review (2006 - present).

Antimo Gioiello; Emiliano Rosatelli; Roberto Nuti; Antonio Macchiarulo; Roberto Pellicciari

Introduction: The G protein-coupled receptor TGR5 is a key player of the bile acid signaling network, and its activation has been proved to increase the glycemic control, to enhance energy expenditure and to exert anti-inflammatory actions. Accordingly, TGR5 ligands have emerged in drug discovery and preclinical appraisals as promising agents for the treatment of liver diseases, metabolic syndrome and related disorders. Areas covered: Recent advances in the field of TGR5 modulators are reviewed, with a particular attention on patent applications and peer-reviewed publications in the past 6 years. Expert opinion: Activation of TGR5 showed to protect mice from diabesity and insulin resistance, to improve liver functions, as well as to attenuate the development of atherosclerosis. However, although the efficacy of TGR5 agonists in mice is encouraging, further studies are needed to determine their potential in humans and to evaluate carefully the balance between the therapeutic benefits and adverse effects associated with the target. The development of new TGR5 selective ligands to support studies in animal models will surely facilitate the understanding of the complexity of TGR5 signaling network.


Bioorganic & Medicinal Chemistry | 2011

Extending SAR of bile acids as FXR ligands: discovery of 23-N-(carbocinnamyloxy)-3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-amine.

Antimo Gioiello; Antonio Macchiarulo; Andrea Carotti; Paolo Filipponi; Gabriele Costantino; Giovanni Rizzo; Luciano Adorini; Roberto Pellicciari

Within our efforts in the discovery of novel potent and selective ligands for the FXR receptor, 23-N-(carbocinnamyloxy)-3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-amine was synthesized and evaluated for its ability to activate and modulate the biological response of the receptor. Alphascreen and RT-PCR revealed that the 6α-ethyl-24-norcholanyl-23-amine derivate behaves as full FXR agonist endowed with high binding affinity and efficacy, representing a promising lead candidate for further optimization. In addition, docking studies provide new insights into the molecular basis governing the partial and full agonist activity at FXR.


Journal of Chemical Information and Modeling | 2008

Molecular field analysis and 3D-quantitative structure-activity relationship study (MFA 3D-QSAR) unveil novel features of bile acid recognition at TGR5

Antonio Macchiarulo; Antimo Gioiello; Charles Thomas; Alberto Massarotti; Roberto Nuti; Emiliano Rosatelli; Paola Sabbatini; Kristina Schoonjans; Johan Auwerx; Roberto Pellicciari

Bile acids regulate nongenomic actions through the activation of TGR5, a membrane receptor that is G protein-coupled to the induction of adenylate cyclase. In this work, a training set of 43 bile acid derivatives is used to develop a molecular interaction field analysis (MFA) and a 3D-quantitative structure-activity relationship study (3D-QSAR) of TGR5 agonists. The predictive ability of the resulting model is evaluated using an external set of compounds with known TGR5 activity, and six bile acid derivatives whose unknown TGR5 activity is herein assessed with in vitro luciferase assay of cAMP formation. The results show a good predictive model and indicate a statistically relevant degree of correlation between the TGR5 activity and the molecular interaction fields produced by discrete positions of the bile acid scaffold. This information is instrumental to extend on a quantitative basis the current structure-activity relationships of bile acids as TGR5 modulators and will be fruitful to design new potent and selective agonists of the receptor.


Current Topics in Medicinal Chemistry | 2014

Beyond Bile Acids: Targeting Farnesoid X Receptor (FXR) with Natural and Synthetic Ligands

Andrea Carotti; Maura Marinozzi; Chiara Custodi; Bruno Cerra; Roberto Pellicciari; Antimo Gioiello; Antonio Macchiarulo

The modulation of FXR receptor remains an attractive area in drug discovery to develop novel therapeutic opportunities for liver and metabolic disorders. Despite the large variety of FXR ligands reported so far, only a very restricted number of agonists have entered in clinical settings. In this review article we provide the reader with an overview on the different classes of natural and synthetic ligands that have been developed by academic groups and pharmaceutical companies to target FXR. We discuss their structure-activity relationships, analyzing the binding modes that some of these compounds adopt to interact with the receptor.

Collaboration


Dive into the Antimo Gioiello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge