Antje M. Richter
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antje M. Richter.
Biochimica et Biophysica Acta | 2009
Antje M. Richter; Gerd P. Pfeifer; Reinhard Dammann
The Ras-Association Domain Family (RASSF) comprises ten members, termed RASSF1 to RASSF10. RASSF1 to RASSF6 harbor a C-terminal Ras-association (RA) domain and RASSF7 to RASSF10 contain an N-terminal RA domain. Interestingly, it was observed that in various tumor types distinct RASSFs transcripts (e.g. RASSF1A and RASSF2A) are missing due to hypermethylation of their CpG island promoter. Since methylation of the RASSF1A promoter is described as an early and frequent event in tumorigenesis, RASSF1A could serve as a useful diagnostic marker in cancer screens. RASSFs are implicated in various cellular mechanisms including apoptosis, cell cycle control and microtubule stabilization, though little is known about the underlying mechanisms. Tumor suppressing functions were reported for several members. Here we review the current literature on RASSF members focusing on structural, functional and epigenetic aspects. Characterizing the cellular mechanisms that regulate the signaling pathways RASSFs are involved in, could lead to a deeper understanding of tumor development and, furthermore, to new strategies in cancer treatment.
Molecular Cancer | 2010
Undraga Schagdarsurengin; Antje M. Richter; Juliane Hornung; Cornelia Lange; Katrin Steinmann; Reinhard Dammann
BackgroundThe Ras association domain family (RASSF) encodes for distinct tumor suppressors and several members are frequently silenced in human cancer. In our study, we analyzed the role of RASSF2, RASSF3, RASSF4, RASSF5A, RASSF5C and RASSF6 and the effectors MST1, MST2 and WW45 in thyroid carcinogenesis.ResultsFrequent methylation of the RASSF2 and RASSF5A CpG island promoters in thyroid tumors was observed. RASSF2 was methylated in 88% of thyroid cancer cell lines and in 63% of primary thyroid carcinomas. RASSF2 methylation was significantly increased in primary thyroid carcinoma compared to normal thyroid, goiter and follicular adenoma (0%, 17% and 0%, respectively; p < 0.05). Patients which were older than 60 years were significantly hypermethylated for RASSF2 in their primary thyroid tumors compared to those younger than 40 years (90% vs. 38%; p < 0.05). RASSF2 promoter hypermethylation correlated with its reduced expression and treatment with a DNA methylation inhibitor reactivated RASSF2 transcription. Over-expression of RASSF2 reduced colony formation of thyroid cancer cells. Functionally our data show that RASSF2 interacts with the proapoptotic kinases MST1 and MST2 and induces apoptosis in thyroid cancer cell lines. Deletion of the MST interaction domain of RASSF2 reduced apoptosis significantly (p < 0.05).ConclusionThese results suggest that RASSF2 encodes a novel epigenetically inactivated candidate tumor suppressor gene in thyroid carcinogenesis.
Epigenetics | 2009
Undraga Schagdarsurengin; Antje M. Richter; Christina Wöhler; Reinhard Dammann
The Ras association domain family (RASSF) encodes for distinct tumor suppressors and several members are frequently silenced in human cancer. In our study, we analyzed the role of a novel RASSF member termed RASSF10 in thyroid carcinogenesis. The RASSF10 CpG island promoter was intensively methylated in nine thyroid cancer cell lines and in 66% of primary thyroid carcinomas. RASSF10 methylation was significantly increased in primary thyroid carcinoma compared to normal thyroid and follicular adenoma (0% and 10%, respectively; p
Journal of Investigative Dermatology | 2012
Peter Helmbold; Antje M. Richter; Sara K. Walesch; Alexander Skorokhod; Wolfgang Ch. Marsch; Alexander Enk; Reinhard Dammann
The Ras association domain family (RASSF) consists of several tumor suppressor genes, which are frequently silenced in human cancers. We analyzed the epigenetic inactivation of RASSF2 and RASSF10 in malignant melanoma (MM) of the skin, including 5 MM cell lines, 28 primary MM, 33 metastases of MM, 47 nevus cell nevi (NCN), and 22 control tissues. The RASSF2 promoter was epigenetically downregulated in two MM cell lines only, but not in any of the investigated tumor samples. In contrast, hypermethylation of the RASSF10 promoter was found in all investigated cell lines, 19/28 (68%) of the primary MM and 30/33 (91%) of the MM metastases, 2/18 (11%) of the dysplastic NCN, and 0/29 (0%) of the non-dysplastic NCN (difference between MM and all nevi, P<0.001). RASSF10 promoter hypermethylation correlated with a reduced RASSF10 mRNA expression in 3/4 MM cell lines, and treatment with a DNA methylation inhibitor reactivated RASSF10 transcription. Furthermore, immunohistological RASSF10 expression corresponds negatively to its promoter methylation state. In summary, RASSF10 proved to be a characteristically epigenetically silenced tumor suppressor in melanomagenesis, and analysis of RASSF10 methylation status represents a new candidate tool to assist in discrimination between MM and NCN.
Molecular Biology International | 2012
Claudia Dittfeld; Antje M. Richter; Katrin Steinmann; Antje Klagge-Ulonska; Reinhard Dammann
The Ras association domain family 1A (RASSF1A) tumor suppressor encodes a Sav-RASSF-Hpo domain (SARAH), which is an interaction domain characterized by hWW45 (dSAV) and MST1/2 (dHpo). In our study, the interaction between RASSF1A and RASSF1C with MST1 and MST2 was demonstrated and it was shown that this interaction depends on the SARAH domain. SARAH domain-deleted RASSF1A had a similar growth-reducing effect as full-length RASSF1A and inhibited anchorage independent growth of the lung cancer cell lines A549 significantly. In cancer cells expressing the SARAH deleted form of RASSF1A, reduced mitotic rates (P = 0.001) with abnormal metaphases (P < 0.001) were observed and a significantly increased rate of apoptosis was found (P = 0.006) compared to full-length RASSF1A. Although the association with microtubules and their stabilization was unaffected, mitotic spindle formation was altered by deletion of the SARAH domain of RASSF1A. In summary, our results suggest that the SARAH domain plays an important role in regulating the function of RASSF1A.
Cancers | 2013
Antje M. Richter; Tanja Haag; Sara K. Walesch; Peter Herrmann-Trost; Wolfgang Ch. Marsch; Heinz Kutzner; Peter Helmbold; Reinhard Dammann
Merkel cell carcinoma (MCC) is one of the most aggressive cancers of the skin. RASSFs are a family of tumor suppressors that are frequently inactivated by promoter hypermethylation in various cancers. We studied CpG island promoter hypermethylation in MCC of RASSF2, RASSF5A, RASSF5C and RASSF10 by combined bisulfite restriction analysis (COBRA) in MCC samples and control tissue. We found RASSF2 to be methylated in three out of 43 (7%), RASSF5A in 17 out of 39 (44%, but also 43% in normal tissue), RASSF5C in two out of 26 (8%) and RASSF10 in 19 out of 84 (23%) of the cancer samples. No correlation between the methylation status of the analyzed RASSFs or between RASSF methylation and MCC characteristics (primary versus metastatic, Merkel cell polyoma virus infection, age, sex) was found. Our results show that RASSF2, RASSF5C and RASSF10 are aberrantly hypermethylated in MCC to a varying degree and this might contribute to Merkel cell carcinogenesis.
Frontiers in Endocrinology | 2015
Antje M. Richter; Tobias Zimmermann; Tanja Haag; Sara K. Walesch; Reinhard Dammann
Pheochromocytomas (PCCs) are rare neuroendocrine tumors that arise from the medulla of the adrenal gland or the sympathetic ganglia and are characterized by the secretion of catecholamines. In 30–40% of patients, PCCs are genetically determined by susceptibility genes as various as RET, VHL, and NF1. We have analyzed the Ras-association domain family members (RASSFs) in PCCs regarding their inactivating promoter hypermethylation status. Previously, we reported a promoter methylation in PCC for the first family member RASSF1A. Promoter hypermethylation of CpG islands leads to the silencing of the according transcript and is a common mechanism for inactivation of tumor suppressors. In this study, we observed inactivating DNA modifications for the RASSF members RASSF2, RASSF5A, RASSF9, and RASSF10, but not for the members RASSF3, RASSF4, RASSF5C, RASSF6, RASSF7, and RASSF8. The degree of promoter methylation was 19% for RASSF2, 67% for RASSF5A, 18% for RASSF9, and 74% for RASSF10. Interestingly, the degree of hypermethylation for RASSF10 in hereditary PCCs was 89 vs. 60% in sporadic PCCs. A similar but less dramatic effect was observed in RASSF5A and RASSF9. Including all RASSF members, we found that of 25 PCCs, 92% show promoter methylation in at least in one RASSF member. In 75% of the hereditary PCC samples, we found two or more methylated RASSF promoters, whereas in sporadic PCCs only 46% were observed. In summary, we could show that in PCC several RASSF members are strongly hypermethylated in their promoter regions and methylation of more than one RASSF member occurs in the majority of PCCs. This adds the inactivation of genes of the RASSF tumor suppressor family to the already known deregulated genes of PCC.
Cancers | 2015
Sara K. Walesch; Antje M. Richter; Peter Helmbold; Reinhard Dammann
Epigenetic inactivation of tumor-related genes is an important characteristic in the pathology of human cancers, including melanomagenesis. We analyzed the epigenetic inactivation of Claudin 11 (CLDN11) in malignant melanoma (MM) of the skin, including six melanoma cell lines, 39 primary melanoma, 41 metastases of MM and 52 nevus cell nevi (NCN). CLDN11 promoter hypermethylation was found in 19 out of 39 (49%) of the primary MM and in 21 out of 41 (51%) of the MM metastases, but only in eight out of 52 (15%) of NCN (p = 0.001 and p = 0.0003, respectively). Moreover, a significant increase in the methylation level of CLDN11 from primary melanomas to MM metastases was revealed (p = 0.003). Methylation of CLDN11 was significantly more frequent in skin metastases (79%) compared to brain metastases (31%; p = 0.007). CLDN11 methylation was also found in five out of six MM cell lines (83%) and its promoter hypermethylation correlated with a reduced expression. Treatment of MM cell lines with a DNA methylation inhibitor reactivated CLDN11 transcription by its promoter demethylation. In summary, CLDN11 proved to be an epigenetically inactivated tumor related gene in melanomagenesis, and analysis of CLDN11 methylation level represents a potential tool for assisting in the discrimination between malignant melanoma and nevus cell nevi.
European Journal of Cancer | 2010
Antje M. Richter; Undraga Schagdarsurengin; Matthias Rastetter; Katrin Steinmann; Reinhard Dammann
Epigenetic inactivation of the Ras-Association Domain Family 1A (RASSF1A) gene is one of the most frequent alterations detected in cancer. The tumour suppressor function of RASSF1A contributes to cell cycle progression, microtubule stabilisation and apoptotic signalling. Here we investigated the putative phosphorylation sites of RASSF1A and the functional consequences. RASSF1A is mainly phosphorylated at Serine 203 within its Ras association domain. Phosphorylation at this site is accomplished by protein kinase A (PKA) and is reduced and elevated by PKA-specific inhibitors and activators, respectively. Functionally, an alanine substitution of Serine 203 (S203A) slightly affected the microtubule stability mediated by RASSF1A (p<0.05). Interestingly, the inhibition of PKA and the S203A substitution of RASSF1A resulted in a reduced rate of apoptotic cells induced by RASSF1A. Moreover, RASSF1A-mediated upregulation of p21 and BAX was observed. This induction was reduced when the S203A substitution was present or when PKA activity was inhibited. In summary our data show that RASSF1A is phosphorylated by PKA and this phosphorylation may affect apoptotic signalling of RASSF1A. Thus epigenetic silencing of RASSF1A may counteract its proapoptotic function in cancer.
Cancers | 2016
Antje M. Richter; Sara K. Walesch; Reinhard Dammann
Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF). Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005). RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005). Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis induction.