Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antje Wichels is active.

Publication


Featured researches published by Antje Wichels.


Science | 2012

Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom.

Hanno Teeling; Bernhard M. Fuchs; Dörte Becher; Christine Klockow; Antje Gardebrecht; Christin M. Bennke; Mariette Kassabgy; Sixing Huang; Alexander J. Mann; Jost Waldmann; Marc Weber; Anna Klindworth; Andreas Otto; Jana Lange; Jörg Bernhardt; Christine Reinsch; Michael Hecker; Jörg Peplies; Frank D. Bockelmann; Ulrich Callies; Gunnar Gerdts; Antje Wichels; Karen Helen Wiltshire; Frank Oliver Glöckner; Thomas Schweder; Rudolf Amann

Blooming Succession Algal blooms in the ocean will trigger a succession of microbial predators and scavengers. Teeling et al. (p. 608) used a combination of microscopy, metagenomics, and metaproteomics to analyze samples from a North Sea diatom bloom over time. Distinct steps of polysaccharide degradation and carbohydrate uptake could be assigned to clades of Flavobacteria and Gammaproteobacteria, which differ profoundly in their transporter profiles and their uptake systems for phosphorus. The phytoplankton/bacterioplankton coupling in coastal marine systems is of crucial importance for global carbon cycling. Bacterioplankton clade succession following phytoplankton blooms may be predictable enough that it can be included in models of global carbon cycling. Seasonal diatom growth in the North Sea results in a temporal succession of metabolically specialized bacteria. Phytoplankton blooms characterize temperate ocean margin zones in spring. We investigated the bacterioplankton response to a diatom bloom in the North Sea and observed a dynamic succession of populations at genus-level resolution. Taxonomically distinct expressions of carbohydrate-active enzymes (transporters; in particular, TonB-dependent transporters) and phosphate acquisition strategies were found, indicating that distinct populations of Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria are specialized for successive decomposition of algal-derived organic matter. Our results suggest that algal substrate availability provided a series of ecological niches in which specialized populations could bloom. This reveals how planktonic species, despite their seemingly homogeneous habitat, can evade extinction by direct competition.


The ISME Journal | 2010

The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea.

Irene Wagner-Döbler; Britta Ballhausen; Martine Berger; Thorsten Brinkhoff; Ina Buchholz; Boyke Bunk; Heribert Cypionka; Rolf Daniel; Thomas Drepper; Gunnar Gerdts; Sarah Hahnke; Cliff Han; Dieter Jahn; Daniela Kalhoefer; Hajnalka Kiss; Hans-Peter Klenk; Nikos C. Kyrpides; Wolfgang Liebl; Heiko Liesegang; Linda Meincke; Amrita Pati; Jörn Petersen; Tanja Piekarski; Claudia Pommerenke; Silke Pradella; Rüdiger Pukall; Ralf Rabus; Erko Stackebrandt; Sebastian Thole; Linda S. Thompson

Dinoroseobacter shibae DFL12T, a member of the globally important marine Roseobacter clade, comprises symbionts of cosmopolitan marine microalgae, including toxic dinoflagellates. Its annotated 4 417 868 bp genome sequence revealed a possible advantage of this symbiosis for the algal host. D. shibae DFL12T is able to synthesize the vitamins B1 and B12 for which its host is auxotrophic. Two pathways for the de novo synthesis of vitamin B12 are present, one requiring oxygen and the other an oxygen-independent pathway. The de novo synthesis of vitamin B12 was confirmed to be functional, and D. shibae DFL12T was shown to provide the growth-limiting vitamins B1 and B12 to its dinoflagellate host. The Roseobacter clade has been considered to comprise obligate aerobic bacteria. However, D. shibae DFL12T is able to grow anaerobically using the alternative electron acceptors nitrate and dimethylsulfoxide; it has the arginine deiminase survival fermentation pathway and a complex oxygen-dependent Fnr (fumarate and nitrate reduction) regulon. Many of these traits are shared with other members of the Roseobacter clade. D. shibae DFL12T has five plasmids, showing examples for vertical recruitment of chromosomal genes (thiC) and horizontal gene transfer (cox genes, gene cluster of 47 kb) possibly by conjugation (vir gene cluster). The long-range (80%) synteny between two sister plasmids provides insights into the emergence of novel plasmids. D. shibae DFL12T shows the most complex viral defense system of all Rhodobacterales sequenced to date.


PLOS ONE | 2012

Small changes in pH have direct effects on marine bacterial community composition: a microcosm approach

Evamaria Krause; Antje Wichels; Luis Giménez; Mirko Lunau; Markus Schilhabel; Gunnar Gerdts

As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15–8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.


eLife | 2016

Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

Hanno Teeling; Bernhard M. Fuchs; Christin M. Bennke; Karen Krüger; Meghan Chafee; Lennart Kappelmann; Greta Reintjes; Jost Waldmann; Christian Quast; Frank Oliver Glöckner; Judith Lucas; Antje Wichels; Gunnar Gerdts; Karen Helen Wiltshire; Rudolf Amann

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI: http://dx.doi.org/10.7554/eLife.11888.001


Marine Environmental Research | 2016

Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles

Inga Kirstein; Sidika Kirmizi; Antje Wichels; Alexa Garin-Fernandez; Rene Erler; Martin G. J. Löder; Gunnar Gerdts

The taxonomic composition of biofilms on marine microplastics is widely unknown. Recent sequencing results indicate that potentially pathogenic Vibrio spp. might be present on floating microplastics. Hence, these particles might function as vectors for the dispersal of pathogens. Microplastics and water samples collected in the North and Baltic Sea were subjected to selective enrichment for pathogenic Vibrio species. Bacterial colonies were isolated from CHROMagar™Vibrio and assigned to Vibrio spp. on the species level by MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionisation - Time of Flight Mass Spectrometry). Respective polymers were identified by ATR FT-IR (Attenuated Total Reflectance Fourier Transform - Infrared Spectroscopy). We discovered potentially pathogenic Vibrio parahaemolyticus on a number of microplastic particles, e.g. polyethylene, polypropylene and polystyrene from North/Baltic Sea. This study confirms the indicated occurrence of potentially pathogenic bacteria on marine microplastics and highlights the urgent need for detailed biogeographical analyses of marine microplastics.


The ISME Journal | 2011

Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics

Marc Weber; Hanno Teeling; Sixing Huang; Jost Waldmann; Mariette Kassabgy; Bernhard M. Fuchs; Anna Klindworth; Christine Klockow; Antje Wichels; Gunnar Gerdts; Rudolf Amann; Frank Oliver Glöckner

Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion.


FEMS Microbiology Ecology | 2015

Bacterial communities associated with four ctenophore genera from the German Bight (North Sea)

Wenjin Hao; Gunnar Gerdts; Jörg Peplies; Antje Wichels

Intense research has been conducted on jellyfish and ctenophores in recent years. They are increasingly recognized as key elements in the marine ecosystem that serve as critical indicators and drivers of ecosystem performance and change. However, the bacterial community associated with ctenophores is still poorly investigated. Based on automated ribosomal intergenic spacer analysis (ARISA) and 16S ribosomal RNA gene amplicon pyrosequencing, we investigated bacterial communities associated with the frequently occurring ctenophore species Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus at Helgoland Roads in the German Bight (North Sea). We observed significant differences between the associated bacterial communities of the different ctenophore species based on ARISA patterns. With respect to bacterial taxa, all ctenophore species were dominated by Proteobacteria as revealed by pyrosequencing. Mnemiopsis leidyi and P. pileus mainly harboured Gammaproteobacteria, with Marinomonas as the dominant phylotype of M. leidyi. By contrast, Pseudoalteromonas and Psychrobacter were the most abundant Gammaproteobacteria in P. pileus. Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by the genus Thalassospira. For B. infundibulum, the bacterial community was composed of Alphaproteobacteria and Gammaproteobacteria in equal parts, which consisted of the genera Thalassospira and Marinomonas. In addition, the bacterial communities associated with M. leidyi display a clear variation over time that needs further investigation. Our results indicate that the bacterial communities associated with ctenophores are highly species- specific.


Applied and Environmental Microbiology | 2010

Constitutive Expression of the Proteorhodopsin Gene by a Flavobacterium Strain Representative of the Proteorhodopsin-Producing Microbial Community in the North Sea

Thomas Riedel; Jürgen Tomasch; Ina Buchholz; Jenny Jacobs; Mario Kollenberg; Gunnar Gerdts; Antje Wichels; Thorsten Brinkhoff; Heribert Cypionka; Irene Wagner-Döbler

ABSTRACT Proteorhodopsin (PR), a photoactive proton pump containing retinal, is present in approximately half of all bacteria in the ocean, but its physiological role is still unclear, since very few strains carrying the PR gene have been cultured. The aim of this work was to characterize PR diversity in a North Sea water sample, cultivate a strain representative of North Sea PR clusters, and study the effects of light and carbon concentration on the expression of the PR gene. A total of 117 PR sequences, of which 101 were unique, were obtained from a clone library of PCR-amplified PR gene fragments. Of the North Sea PRs, 97% were green light absorbing, as inferred from the amino acid at position 105; 67% of the PR protein fragments showed closest similarity to PRs from Alphaproteobacteria, 4% showed closest similarity to PRs from Gammaproteobacteria, and 29% showed closest similarity to PRs from “Bacteroidetes”/Flavobacteria. The dominant PR cluster (comprising 18% of all PRs) showed a high degree of similarity to the PR from the cultivated Roseobacter strain HTCC2255. The relative abundances of the North Sea PR clusters were confirmed by quantitative PCR. They were detected in metagenomic fragments from coastal oceans worldwide with various degrees of abundance. Several hundred bacterial strains from the North Sea water sample were cultivated on oligocarbophilic media. By screening with degenerate primers, two strains carrying the PR gene were identified. Their 16S rRNA gene sequences were identical and affiliated with a Bacteroidetes subcluster from the North Sea. The PR sequence of isolate PRO95 was completed by chromosomal walking. It was 76% identical to that of Dokdonia donghaensis MED134 and was functional, as indicated by the signature amino acids. PRO95 expressed its PR gene in liquid media containing between 9.7 and 121 mM carbon, both in the light and in the dark. Growth was not enhanced by light. Thus, the detection of the physiological role of PR may require more sensitive methods.


Microbial Ecology | 2012

Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea.

Sonja Oberbeckmann; Bernhard M. Fuchs; Mirja Meiners; Antje Wichels; Karen Helen Wiltshire; Gunnar Gerdts

Vibrio species are ubiquitously distributed in marine waters all over the world. High genome plasticity due to frequent mutation, recombination, and lateral gene transfer enables Vibrio to adapt rapidly to environmental changes. The genus Vibrio comprises several human pathogens, which commonly cause outbreaks of severe diarrhea in tropical regions. In recent years, pathogenic Vibrio emerged also in coastal European waters. Little is known about factors driving the proliferation of Vibrio spp. in temperate waters such as the North Sea. In this study a quantification of Vibrio in the North Sea and their response to biotic and abiotic parameters were assessed. Between January and December 2009, Vibrio at Helgoland Roads (North Sea, Germany) were quantified using fluorescence in situ hybridization. Vibrio numbers up to 3.4 × 104 cells × mL−1 (2.2% of total microbial counts) were determined in summer, but their abundance was significantly lower in winter (5 × 102 cells × mL−1). Correlations between Vibrio and nutrients (SiO2, PO43−, DIN), Secchi depth, temperature, salinity, and chlorophyll a were calculated using Spearman rank analysis. Multiple stepwise regression analysis was carried out to analyze the additive influence of multiple factors on Vibrio. Based on these calculations, we found that high water temperature and low salinity best explained the increase of Vibrio cell numbers. Other environmental parameters, especially nutrients and chlorophyll a, also had an influence. All variables were shown to be subject to the overall seasonal dynamics at Helgoland Roads. Multiple regression models could represent an efficient and reliable tool to predict Vibrio abundances in response to the climate change in European waters.


Applied and Environmental Microbiology | 2011

Temporal variability of coastal Planctomycetes clades at Kabeltonne station, North Sea.

Ilaria Pizzetti; Bernhard M. Fuchs; Gunnar Gerdts; Antje Wichels; Karen Helen Wiltshire; Rudolf Amann

ABSTRACT Members of the bacterial phylum Planctomycetes are reported in marine water samples worldwide, but quantitative information is scarce. Here we investigated the phylogenetic diversity, abundance, and distribution of Planctomycetes in surface waters off the German North Sea island Helgoland during different seasons by 16S rRNA gene analysis and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Generally Planctomycetes are more abundant in samples collected in summer and autumn than in samples collected in winter and spring. Statistical analysis revealed that Planctomycetes abundance was correlated to the Centrales diatom bloom in spring 2007. The analysis of size-fractionated seawater samples and of macroaggregates showed that ∼90% of the Planctomycetes reside in the >3-μm size fraction. Comparative sequence analysis of 184 almost full-length 16S rRNA genes revealed three dominant clades. The clades, named Planctomyces-related group A, uncultured Planctomycetes group B, and Pirellula-related group D, were monitored by CARD-FISH using newly developed oligonucleotide probes. All three clades showed recurrent abundance patterns during two annual sampling campaigns. Uncultured Planctomycetes group B was most abundant in autumn samples, while Planctomyces-related group A was present in high numbers only during late autumn and winter. The levels of Pirellula-related group D were more constant throughout the year, with elevated counts in summer. Our analyses suggest that the seasonal succession of the Planctomycetes is correlated with algal blooms. We hypothesize that the niche partitioning of the different clades might be caused by their algal substrates.

Collaboration


Dive into the Antje Wichels's collaboration.

Top Co-Authors

Avatar

Gunnar Gerdts

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Karen Helen Wiltshire

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Amann

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Evamaria Krause

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge