Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Oliver Glöckner is active.

Publication


Featured researches published by Frank Oliver Glöckner.


Bioinformatics | 2016

JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison.

Michael Richter; Ramon Rosselló-Móra; Frank Oliver Glöckner; Jörg Peplies

Abstract Summary: JSpecies Web Server (JSpeciesWS) is a user-friendly online service for in silico calculating the extent of identity between two genomes, a parameter routinely used in the process of polyphasic microbial species circumscription. The service measures the average nucleotide identity (ANI) based on BLAST+ (ANIb) and MUMmer (ANIm), as well as correlation indexes of tetra-nucleotide signatures (Tetra). In addition, it provides a Tetra Correlation Search function, which allows to rapidly compare selected genomes against a continuously updated reference database with currently about 32u2009000 published whole and draft genome sequences. For comparison, own genomes can be uploaded and references can be selected from the JSpeciesWS reference database. The service indicates whether two genomes share genomic identities above or below the species embracing thresholds, and serves as a fast way to allocate unknown genomes in the frame of the hitherto sequenced species. Availability and implementation: JSpeciesWS is available at http://jspecies.ribohost.com/jspeciesws. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: [email protected]


Frontiers in Microbiology | 2016

Expanding the World of Marine Bacterial and Archaeal Clades

Pelin Yilmaz; Pablo Yarza; Josephine Z. Rapp; Frank Oliver Glöckner

Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 “clades,” at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as our CTU approach breaks down these randomly lumped clades into smaller objectively calculated subgroups. Finally, all taxa were classified and named following standards compatible with the Bacteriological Code rules, enhancing their digitization, and comparability with future microbial ecological and taxonomy studies.


eLife | 2016

Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

Hanno Teeling; Bernhard M. Fuchs; Christin M. Bennke; Karen Krüger; Meghan Chafee; Lennart Kappelmann; Greta Reintjes; Jost Waldmann; Christian Quast; Frank Oliver Glöckner; Judith Lucas; Antje Wichels; Gunnar Gerdts; Karen Helen Wiltshire; Rudolf Amann

A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI: http://dx.doi.org/10.7554/eLife.11888.001


Environmental Microbiology | 2016

Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate‐reducing bacterium involved in the thermophilic anaerobic oxidation of methane

Viola Krukenberg; Katie Jean Harding; Michael Richter; Frank Oliver Glöckner; Harald R. Gruber-Vodicka; Birgit Adam; Jasmine S. Berg; Katrin Knittel; Halina E. Tegetmeyer; Antje Boetius; Gunter Wegener

The anaerobic oxidation of methane (AOM) is mediated by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. In thermophilic AOM consortia enriched from Guaymas Basin, members of the ANME-1 clade are associated with bacteria of the HotSeep-1 cluster, which likely perform direct electron exchange via nanowires. The partner bacterium was enriched with hydrogen as sole electron donor and sulfate as electron acceptor. Based on phylogenetic, genomic and metabolic characteristics we propose to name this chemolithoautotrophic sulfate reducer Candidatus Desulfofervidus auxilii. Ca.xa0D. auxilii grows on hydrogen at temperatures between 50°C and 70°C with an activity optimum at 60°C and doubling time of 4-6 days. Its genome draft encodes for canonical sulfate reduction, periplasmic and soluble hydrogenases and autotrophic carbon fixation via the reductive tricarboxylic acid cycle. The presence of genes for pili formation and cytochromes, and their similarity to genes of Geobacter spp., indicate a potential for syntrophic growth via direct interspecies electron transfer when the organism grows in consortia with ANME. This first ANME-free enrichment of an AOM partner bacterium and its characterization opens the perspective for a deeper understanding of syntrophy in anaerobic methane oxidation.


Environmental Microbiology | 2016

Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans DsijT

Tristan Barbeyron; François Thomas; Valérie Barbe; Hanno Teeling; Chantal Schenowitz; Carole Dossat; Alexander Goesmann; Catherine Leblanc; Frank Oliver Glöckner; Mirjam Czjzek; Rudolf Amann; Gurvan Michel

The marine flavobacterium Zobellia galactanivorans DsijT was isolated from a red alga and by now constitutes a model for studying algal polysaccharide bioconversions. We present an in-depth analysis of its complete genome and link it to physiological traits. Z. galactanivorans exhibited the highest gene numbers for glycoside hydrolases, polysaccharide lyases and carbohydrate esterases and the second highest sulfatase gene number in a comparison to 125 other marine heterotrophic bacteria (MHB) genomes. Its genome contains 50 polysaccharide utilization loci, 22 of which contain sulfatase genes. Catabolic profiling confirmed a pronounced capacity for using algal polysaccharides and degradation of most polysaccharides could be linked to dedicated genes. Physiological and biochemical tests revealed that Z. galactanivorans stores and recycles glycogen, despite loss of several classic glycogen-related genes. Similar gene losses were observed in most Flavobacteriia, suggesting presence of an atypical glycogen metabolism in this class. Z. galactanivorans features numerous adaptive traits for algae-associated life, such as consumption of seaweed exudates, iodine metabolism and methylotrophy, indicating that this bacterium is well equipped to form profitable, stable interactions with macroalgae. Finally, using statistical and clustering analyses of the MHB genomes we show that their carbohydrate catabolism correlates with both taxonomy and habitat.


Nucleic Acids Research | 2016

Phylogeny-aware identification and correction of taxonomically mislabeled sequences

Alexey Kozlov; Jiajie Zhang; Pelin Yilmaz; Frank Oliver Glöckner; Alexandros Stamatakis

Abstract Molecular sequences in public databases are mostly annotated by the submitting authors without further validation. This procedure can generate erroneous taxonomic sequence labels. Mislabeled sequences are hard to identify, and they can induce downstream errors because new sequences are typically annotated using existing ones. Furthermore, taxonomic mislabelings in reference sequence databases can bias metagenetic studies which rely on the taxonomy. Despite significant efforts to improve the quality of taxonomic annotations, the curation rate is low because of the labor-intensive manual curation process. Here, we present SATIVA, a phylogeny-aware method to automatically identify taxonomically mislabeled sequences (‘mislabels’) using statistical models of evolution. We use the Evolutionary Placement Algorithm (EPA) to detect and score sequences whose taxonomic annotation is not supported by the underlying phylogenetic signal, and automatically propose a corrected taxonomic classification for those. Using simulated data, we show that our method attains high accuracy for identification (96.9% sensitivity/91.7% precision) as well as correction (94.9% sensitivity/89.9% precision) of mislabels. Furthermore, an analysis of four widely used microbial 16S reference databases (Greengenes, LTP, RDP and SILVA) indicates that they currently contain between 0.2% and 2.5% mislabels. Finally, we use SATIVA to perform an in-depth evaluation of alternative taxonomies for Cyanobacteria. SATIVA is freely available at https://github.com/amkozlov/sativa.


Frontiers in Microbiology | 2016

Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

Stefano Romano; Antonio Fernandez-Guerra; F. Jerry Reen; Frank Oliver Glöckner; Susan P. Crowley; Orla O'Sullivan; Paul D. Cotter; Claire Adams; Alan D. W. Dobson; Fergal O'Gara

Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P. axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny.


Journal of Microbiology & Biology Education | 2016

MyOSD 2014: Evaluating Oceanographic Measurements Contributed by Citizen Scientists in Support of Ocean Sampling Day

Julia Schnetzer; Anna Kopf; Matthew J. Bietz; Pier Luigi Buttigieg; Antonio Fernandez-Guerra; Aleksandar Pop Ristov; Frank Oliver Glöckner; Renzo Kottmann

The first Ocean Sampling Day (OSD) took place on June 21, 2014. In a coordinated effort, an internationally distributed group of scientists collected samples from marine surface waters in order to study microbial diversity on a single day with global granularity. Concurrently, citizen scientists enriched the OSD initiative through the MyOSD project, providing additional oceanographic measurements crucial to the contextualization of microbial diversity. Clear protocols, a user-friendly smartphone application, and an online web-form guided citizens in accurate data acquisition, promoting quality submissions to the project’s information system. To evaluate the coverage and quality of MyOSD data submissions, we compared the sea surface temperature measurements acquired through OSD, MyOSD, and automatic in situ systems and satellite measurements. Our results show that the quality of citizen-science measurements was comparable to that of scientific measurements. As 79% of MyOSD measurements were conducted in geographic areas not covered by automatic in situ or satellite measurement, citizen scientists contributed significantly to worldwide oceanographic data gathering. Furthermore, survey results indicate that participation in MyOSD made citizens feel more engaged in ocean issues and may have increased their environmental awareness and ocean literacy.


SpringerPlus | 2016

An Information System for European culture collections: the way forward

Serge Casaregola; Alexander Vasilenko; Paolo Romano; Vincent Robert; S. M. Ozerskaya; Anna Kopf; Frank Oliver Glöckner; David Smith

Culture collections contain indispensable information about the microorganisms preserved in their repositories, such as taxonomical descriptions, origins, physiological and biochemical characteristics, bibliographic references, etc. However, information currently accessible in databases rarely adheres to common standard protocols. The resultant heterogeneity between culture collections, in terms of both content and format, notably hampers microorganism-based research and development (R&D). The optimized exploitation of these resources thus requires standardized, and simplified, access to the associated information. To this end, and in the interest of supporting R&D in the fields of agriculture, health and biotechnology, a pan-European distributed research infrastructure, MIRRI, including over 40 public culture collections and research institutes from 19 European countries, was established. A prime objective of MIRRI is to unite and provide universal access to the fragmented, and untapped, resources, information and expertise available in European public collections of microorganisms; a key component of which is to develop a dynamic Information System. For the first time, both culture collection curators as well as their users have been consulted and their feedback, concerning the needs and requirements for collection databases and data accessibility, utilised. Users primarily noted that databases were not interoperable, thus rendering a global search of multiple databases impossible. Unreliable or out-of-date and, in particular, non-homogenous, taxonomic information was also considered to be a major obstacle to searching microbial data efficiently. Moreover, complex searches are rarely possible in online databases thus limiting the extent of search queries. Curators also consider that overall harmonization—including Standard Operating Procedures, data structure, and software tools—is necessary to facilitate their work and to make high-quality data easily accessible to their users. Clearly, the needs of culture collection curators coincide with those of users on the crucial point of database interoperability. In this regard, and in order to design an appropriate Information System, important aspects on which the culture collection community should focus include: the interoperability of data sets with the ontologies to be used; setting best practice in data management, and the definition of an appropriate data standard.


Frontiers for Young Minds | 2016

Understanding Marine Microbes, the Driving Engines of the Ocean

Anna Kopf; Julia Schnetzer; Frank Oliver Glöckner

When you hear the word microbes, what comes to your mind? Something much too small to see and that makes you fall ill? Just because some microbes cause diseases that does not mean they are all evil. For example, in the marine (ocean) environment, the vast majority of microbes are good ones. They are the “driving engines” of the ocean and are essential for the health of our whole planet. Unfortunately, most of the marine microbes and their interactions with the marine environment are poorly understood. So, it is important to get an idea of which microbes are helping us and how they are doing this. These data will provide scientists with the knowledge to fight against big global challenges, such as climate change and environmental pollution. Unfortunately, it is very hard to study marine microbes due to their microscopic size, huge diversity, and their big home – the ocean. Therefore, we would like to engage “citizen scientists” in this project to help us to sample marine microbes so that we can identify them. reviewed by:

Collaboration


Dive into the Frank Oliver Glöckner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge