Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoine Descoeudres is active.

Publication


Featured researches published by Antoine Descoeudres.


green | 2012

High-efficiency Silicon Heterojunction Solar Cells: A Review

Stefaan De Wolf; Antoine Descoeudres; Zachary C. Holman; Christophe Ballif

Abstract Silicon heterojunction solar cells consist of thin amorphous silicon layers deposited on crystalline silicon wafers. This design enables energy conversion efficiencies above 20% at the industrial production level. The key feature of this technology is that the metal contacts, which are highly recombination active in traditional, diffused-junction cells, are electronically separated from the absorber by insertion of a wider bandgap layer. This enables the record open-circuit voltages typically associated with heterojunction devices without the need for expensive patterning techniques. This article reviews the salient points of this technology. First, we briefly elucidate device characteristics. This is followed by a discussion of each processing step, device operation, and device stability and industrial upscaling, including the fabrication of solar cells with energy-conversion efficiencies over 21%. Finally, future trends are pointed out.


IEEE Journal of Photovoltaics | 2012

Current Losses at the Front of Silicon Heterojunction Solar Cells

Zachary C. Holman; Antoine Descoeudres; L. Barraud; Fernando Zicarelli Fernandez; J. P. Seif; S. De Wolf; Christophe Ballif

The current losses due to parasitic absorption in the indium tin oxide (ITO) and amorphous silicon (a-Si:H) layers at the front of silicon heterojunction solar cells are isolated and quantified. Quantum efficiency spectra of cells in which select layers are omitted reveal that the collection efficiency of carriers generated in the ITO and doped a-Si:H layers is zero, and only 30% of light absorbed in the intrinsic a-Si:H layer contributes to the short-circuit current. Using the optical constants of each layer acquired from ellipsometry as inputs in a model, the quantum efficiency and short-wavelength current loss of a heterojunction cell with arbitrary a-Si:H layer thicknesses and arbitrary ITO doping can be correctly predicted. A 4 cm2 solar cell in which these parameters have been optimized exhibits a short-circuit current density of 38.1 mA/cm2 and an efficiency of 20.8%.


Applied Physics Letters | 2011

Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment

Antoine Descoeudres; Loris Barraud; Stefaan De Wolf; B. Strahm; D. Lachenal; Chloé Guerin; Zachary C. Holman; F. Zicarelli; Bénédicte Demaurex; Johannes Peter Seif; Jakub Holovsky; Christophe Ballif

Silicon heterojunction solar cells have high open-circuit voltages thanks to excellent passivation of the wafer surfaces by thin intrinsic amorphous silicon (a-Si:H) layers deposited by plasma-enhanced chemical vapor deposition. We show a dramatic improvement in passivation when H2 plasma treatments are used during film deposition. Although the bulk of the a-Si:H layers is slightly more disordered after H2 treatment, the hydrogenation of the wafer/film interface is nevertheless improved with as-deposited layers. Employing H2 treatments, 4 cm2 heterojunction solar cells were produced with industry-compatible processes, yielding open-circuit voltages up to 725 mV and aperture area efficiencies up to 21%.


Journal of Applied Physics | 2013

Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells

Zachary C. Holman; Miha Filipič; Antoine Descoeudres; Stefaan De Wolf; F. Smole; Marko Topič; Christophe Ballif

Silicon heterojunction solar cells have record-high open-circuit voltages but suffer from reduced short-circuit currents due in large part to parasitic absorption in the amorphous silicon, transparent conductive oxide (TCO), and metal layers. We previously identified and quantified visible and ultraviolet parasitic absorption in heterojunctions; here, we extend the analysis to infrared light in heterojunction solar cells with efficiencies exceeding 20%. An extensive experimental investigation of the TCO layers indicates that the rear layer serves as a crucial electrical contact between amorphous silicon and the metal reflector. If very transparent and at least 150 nm thick, the rear TCO layer also maximizes infrared response. An optical model that combines a ray-tracing algorithm and a thin-film simulator reveals why: parallel-polarized light arriving at the rear surface at oblique incidence excites surface plasmons in the metal reflector, and this parasitic absorption in the metal can exceed the absorption in the TCO layer itself. Thick TCO layers—or dielectric layers, in rear-passivated diffused-junction silicon solar cells—reduce the penetration of the evanescent waves to the metal, thereby increasing internal reflectance at the rear surface. With an optimized rear TCO layer, the front TCO dominates the infrared losses in heterojunction solar cells. As its thickness and carrier density are constrained by anti-reflection and lateral conduction requirements, the front TCO can be improved only by increasing its electron mobility. Cell results attest to the power of TCO optimization: With a high-mobility front TCO and a 150-nm-thick, highly transparent rear ITO layer, we recently reported a 4-cm2 silicon heterojunction solar cell with an active-area short-circuit current density of nearly 39 mA/cm2 and a certified efficiency of over 22%.


IEEE Journal of Photovoltaics | 2013

>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared

Antoine Descoeudres; Zachary C. Holman; L. Barraud; S. Morel; S. De Wolf; Christophe Ballif

The properties and high-efficiency potential of front- and rear-emitter silicon heterojunction solar cells on n- and p-type wafers were experimentally investigated. In the low-carrier-injection range, cells on p-type wafers suffer from reduced minority carrier lifetime, mainly due to the asymmetry in interface defect capture cross sections. This leads to slightly lower fill factors than for n-type cells. By using high-quality passivation layers, however, these losses can be minimized. High open-circuit voltages (Vocs) were obtained on both types of float zone (FZ) wafers: up to 735 mV on n-type and 726 mV on p-type. The best Voc measured on Czochralski (CZ) p-type wafers was only 692 mV, whereas it reached 732 mV on CZ n-type. The highest aperture-area certified efficiencies obtained on 4 cm2 cells were 22.14% (Voc = 727 mV , FF = 78.4%) and 21.38% (Voc = 722 mV, FF = 77.1%) on n- and p-type FZ wafers, respectively, proving that heterojunction schemes can perform almost as well on high-quality p-type as on n-type wafers. To our knowledge, this is the highest efficiency ever reported for a full silicon heterojunction solar cell on a p-type wafer, and the highest Voc on any p-type crystalline silicon device with reasonable FF.


Applied Physics Letters | 2012

Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering

Bénédicte Demaurex; Stefaan De Wolf; Antoine Descoeudres; Zachary C. Holman; Christophe Ballif

Damage of the hydrogenated amorphous/crystalline silicon interface passivation during transparent conductive oxide sputtering is reported. This occurs in the fabrication process of silicon heterojunction solar cells. We observe that this damage is at least partially caused by luminescence of the sputter plasma. Following low-temperature annealing, the electronic interface properties are recovered. However, the silicon-hydrogen configuration of the amorphous silicon film is permanently changed, as observed from infra-red absorbance spectra. In silicon heterojunction solar cells, although the as-deposited films microstructure cannot be restored after sputtering, no significant losses are observed in their open-circuit voltage.


Journal of Applied Physics | 2014

Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells

Johannes Peter Seif; Antoine Descoeudres; Miha Filipič; F. Smole; Marko Topič; Zachary C. Holman; Stefaan De Wolf; Christophe Ballif

In amorphous/crystalline silicon heterojunction solar cells, optical losses can be mitigated by replacing the amorphous silicon films by wider bandgap amorphous silicon oxide layers. In this article, we use stacks of intrinsic amorphous silicon and amorphous silicon oxide as front intrinsic buffer layers and show that this increases the short-circuit current density by up to 0.43 mA/cm2 due to less reflection and a higher transparency at short wavelengths. Additionally, high open-circuit voltages can be maintained, thanks to good interface passivation. However, we find that the gain in current is more than offset by losses in fill factor. Aided by device simulations, we link these losses to impeded carrier collection fundamentally caused by the increased valence band offset at the amorphous/crystalline interface. Despite this, carrier extraction can be improved by raising the temperature; we find that cells with amorphous silicon oxide window layers show an even lower temperature coefficient than referenc...


IEEE Journal of Photovoltaics | 2014

Back-Contacted Silicon Heterojunction Solar Cells With Efficiency >21%

Andrea Tomasi; Bertrand Paviet-Salomon; D. Lachenal; Silvia Martin de Nicolas; Antoine Descoeudres; Jonas Geissbühler; Stefaan De Wolf; Christophe Ballif

We report on the fabrication of back-contacted silicon heterojunction solar cells with conversion efficiencies above 21%. Our process technology relies solely on simple and size-scalable patterning methods, with no high-temperature steps. Using in situ shadow masks, doped hydrogenated amorphous silicon layers are patterned into two interdigitated combs. Transparent conductive oxide and metal layers, forming the back electrodes, are patterned by hot melt inkjet printing. With this process, we obtain high short-circuit current densities close to 40 mA/cm2 and open-circuit voltages exceeding 720 mV, leading to a conversion efficiency of 21.5%. However, moderate fill factor values limit our current device efficiencies. Unhindered carrier transport through both heterocontact layer stacks, as well as higher passivation quality over the minority carrier-injection range relevant for solar cell operation, are identified as key factors for improved fill factor values and device performance.


IEEE Journal of Photovoltaics | 2013

Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors

Zachary C. Holman; Antoine Descoeudres; Stefaan De Wolf; Christophe Ballif

Inserting a dielectric between the absorber and rear metal electrode of a solar cell increases rear internal reflectance by both limiting the transmission cone and suppressing the plasmonic absorption of light arriving outside of the cone. We fabricate rear reflectors with low-refractive-index magnesium fluoride (MgF2) as the dielectric, and with local electrical contacts through the MgF2 layer. These MgF2/metal reflectors are introduced into amorphous silicon/crystalline silicon heterojunction solar cells in place of the usual transparent conductive oxide/metal reflector. An MgF2/Ag reflector yields an average rear internal reflectance of greater than 99.5% and an infrared internal quantum efficiency that exceeds that of the world-record UNSW PERL cell. An MgF2/Al reflector performs nearly as well, enabling an efficiency of 21.3% and a short-circuit current density of nearly 38 mA/cm2 in a silicon heterojunction solar cell without silver or indium tin oxide at the rear.


IEEE Journal of Photovoltaics | 2016

Realization of GaInP/Si Dual-Junction Solar Cells With 29.8% 1-Sun Efficiency

Stephanie Essig; Myles A. Steiner; Christophe Allebe; J. F. Geisz; Bertrand Paviet-Salomon; Scott Ward; Antoine Descoeudres; Vincenzo LaSalvia; Loris Barraud; N. Badel; Antonin Faes; Jacques Levrat; Matthieu Despeisse; Christophe Ballif; Paul Stradins; David L. Young

Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III–V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III–V and Si single-junction solar cells. The effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.

Collaboration


Dive into the Antoine Descoeudres's collaboration.

Top Co-Authors

Avatar

Christophe Ballif

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Loris Barraud

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Stefaan De Wolf

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthieu Despeisse

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jonas Geissbühler

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

N. Badel

Swiss Center for Electronics and Microtechnology

View shared research outputs
Top Co-Authors

Avatar

B. Strahm

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Bertrand Paviet-Salomon

Swiss Center for Electronics and Microtechnology

View shared research outputs
Top Co-Authors

Avatar

Jacques Levrat

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge