Christophe Ballif
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Ballif.
Journal of Physical Chemistry Letters | 2014
Stefaan De Wolf; Jakub Holovsky; Soo-Jin Moon; Philipp Löper; Bjoern Niesen; Martin Ledinsky; Franz-Josef Haug; Jun-Ho Yum; Christophe Ballif
Solar cells based on organometallic halide perovskite absorber layers are emerging as a high-performance photovoltaic technology. Using highly sensitive photothermal deflection and photocurrent spectroscopy, we measure the absorption spectrum of CH3NH3PbI3 perovskite thin films at room temperature. We find a high absorption coefficient with particularly sharp onset. Below the bandgap, the absorption is exponential over more than four decades with an Urbach energy as small as 15 meV, which suggests a well-ordered microstructure. No deep states are found down to the detection limit of ∼1 cm(-1). These results confirm the excellent electronic properties of perovskite thin films, enabling the very high open-circuit voltages reported for perovskite solar cells. Following intentional moisture ingress, we find that the absorption at photon energies below 2.4 eV is strongly reduced, pointing to a compositional change of the material.
green | 2012
Stefaan De Wolf; Antoine Descoeudres; Zachary C. Holman; Christophe Ballif
Abstract Silicon heterojunction solar cells consist of thin amorphous silicon layers deposited on crystalline silicon wafers. This design enables energy conversion efficiencies above 20% at the industrial production level. The key feature of this technology is that the metal contacts, which are highly recombination active in traditional, diffused-junction cells, are electronically separated from the absorber by insertion of a wider bandgap layer. This enables the record open-circuit voltages typically associated with heterojunction devices without the need for expensive patterning techniques. This article reviews the salient points of this technology. First, we briefly elucidate device characteristics. This is followed by a discussion of each processing step, device operation, and device stability and industrial upscaling, including the fabrication of solar cells with energy-conversion efficiencies over 21%. Finally, future trends are pointed out.
ACS Nano | 2012
Corsin Battaglia; Ching-Mei Hsu; Karin Söderström; Jordi Escarré; Franz-Josef Haug; Mathieu Charrière; Mathieu Boccard; Matthieu Despeisse; Duncan T. L. Alexander; Marco Cantoni; Yi Cui; Christophe Ballif
Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on the random pyramidal morphology of transparent zinc oxide electrodes. Based on insights from waveguide theory, we develop tailored periodic arrays of nanocavities on glass fabricated by nanosphere lithography, which enable a cell with a remarkable short-circuit current density of 17.1 mA/cm(2) and a high initial efficiency of 10.9%. A direct comparison with a cell deposited on the random pyramidal morphology of state-of-the-art zinc oxide electrodes, replicated onto glass using nanoimprint lithography, demonstrates unambiguously that periodic structures rival random textures.
Applied Physics Letters | 2007
P. Buehlmann; Julien Bailat; Didier Dominé; Adrian Billet; Fanny Meillaud; A. Feltrin; Christophe Ballif
We show that SiO-based intermediate reflectors (SOIRs) can be fabricated in the same reactor and with the same process gases as used for thin-film silicon solar cells. By varying input gas ratios, SOIR layers with a wide range of optical and electrical properties are obtained. The influence of the SOIR thickness in the micromorph cell is studied and current gain and losses are discussed. Initial micromorph cell efficiency of 12.2% (Voc=1.40V, fill factor=71.9%, and Jsc=12.1mA∕cm2) is achieved with top cell, SOIR, and bottom cell thicknesses of 270, 95, and 1800nm, respectively.
IEEE Journal of Photovoltaics | 2012
Zachary C. Holman; Antoine Descoeudres; L. Barraud; Fernando Zicarelli Fernandez; J. P. Seif; S. De Wolf; Christophe Ballif
The current losses due to parasitic absorption in the indium tin oxide (ITO) and amorphous silicon (a-Si:H) layers at the front of silicon heterojunction solar cells are isolated and quantified. Quantum efficiency spectra of cells in which select layers are omitted reveal that the collection efficiency of carriers generated in the ITO and doped a-Si:H layers is zero, and only 30% of light absorbed in the intrinsic a-Si:H layer contributes to the short-circuit current. Using the optical constants of each layer acquired from ellipsometry as inputs in a model, the quantum efficiency and short-wavelength current loss of a heterojunction cell with arbitrary a-Si:H layer thicknesses and arbitrary ITO doping can be correctly predicted. A 4 cm2 solar cell in which these parameters have been optimized exhibits a short-circuit current density of 38.1 mA/cm2 and an efficiency of 20.8%.
Journal of Physical Chemistry Letters | 2016
Jérémie Werner; Ching-Hsun Weng; Arnaud Walter; Luc Fesquet; Johannes Peter Seif; Stefaan De Wolf; Bjoern Niesen; Christophe Ballif
Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.
Applied Physics Letters | 2007
J. Steinhauser; S. Faÿ; N. Oliveira; E. Vallat-Sauvain; Christophe Ballif
A comprehensive model for the electronic transport in polycrystalline ZnO:B thin films grown by low pressure chemical vapor deposition is presented. The optical mobilities and carrier concentration calculated from reflectance spectra using the Drude model were compared with the data obtained by Hall measurements. By analyzing the results for samples with large variation of grain size and doping level, the respective influences on the transport of potential barriers at grain boundaries and intragrain scattering could be separated unambiguously. A continuous transition from grain boundary scattering to intragrain scattering is observed for doping level increasing from 3×1019to2×1020cm−3.
Journal of Applied Physics | 2008
F.-J. Haug; T. Söderström; Oscar Cubero; Vanessa Terrazzoni-Daudrix; Christophe Ballif
We study the influence of different textures and dielectric environments on the excitation of surface plasmon resonances on silver because textured metallic films often serve as back contacts of silicon thin film solar cells. For coupling between light and the surface plasmon excitation we use a periodic sinusoidal structure that enables us to sample the dispersion relation at well defined conditions with a simple spectral reflection measurement. We use three layer samples of amorphous silicon/ZnO/silver to mimic the behavior of the back contact in a thin film silicon solar cell; the measurements suggest that losses due to plasmon excitation can very well extend in the spectral region where optimum reflectance is desired. An appropriate thickness of ZnO is able to reduce absorption losses. Our findings on periodic structures are also found useful to explain the behavior of surface plasmon excitation on randomly textured ZnO/Ag reflector layers.
Journal of Physical Chemistry Letters | 2015
Philipp Löper; Michael Stuckelberger; Bjoern Niesen; Jérémie Werner; Miha Filipič; Soo-Jin Moon; Jun-Ho Yum; Marko Topič; Stefaan De Wolf; Christophe Ballif
The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.
Applied Physics Letters | 2014
Corsin Battaglia; Silvia Martin de Nicolas; Stefaan De Wolf; Xingtian Yin; Maxwell Zheng; Christophe Ballif; Ali Javey
We explore substoichiometric molybdenum trioxide (MoOx, x < 3) as a dopant-free, hole-selective contact for silicon solar cells. Using an intrinsic hydrogenated amorphous silicon passivation layer between the oxide and the silicon absorber, we demonstrate a high open-circuit voltage of 711 mV and power conversion efficiency of 18.8%. Due to the wide band gap of MoOx, we observe a substantial gain in photocurrent of 1.9 mA/cm2 in the ultraviolet and visible part of the solar spectrum, when compared to a p-type amorphous silicon emitter of a traditional silicon heterojunction cell. Our results emphasize the strong potential for oxides as carrier selective heterojunction partners to inorganic semiconductors.