Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoine Dufour is active.

Publication


Featured researches published by Antoine Dufour.


Nature Medicine | 2014

A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity

David Marchant; Caroline L. Bellac; Theo J. Moraes; Samuel Wadsworth; Antoine Dufour; Georgina S. Butler; Leanne M. Bilawchuk; Reid Hendry; A Gordon Robertson; Caroline Cheung; Julie Ng; Lisa Ang; Zongshu Luo; Karl Heilbron; Michael J Norris; Wenming Duan; Taylor Bucyk; Andrei Karpov; Laurent Devel; Dimitris Georgiadis; Richard G. Hegele; Honglin Luo; David J. Granville; Vincent Dive; Bruce M. McManus; Christopher M. Overall

Interferon-α (IFN-α) is essential for antiviral immunity, but in the absence of matrix metalloproteinase-12 (MMP-12) or IκBα (encoded by NFKBIA) we show that IFN-α is retained in the cytosol of virus-infected cells and is not secreted. Our findings suggest that activated IκBα mediates the export of IFN-α from virus-infected cells and that the inability of cells in Mmp12−/− but not wild-type mice to express IκBα and thus export IFN-α makes coxsackievirus type B3 infection lethal and renders respiratory syncytial virus more pathogenic. We show here that after macrophage secretion, MMP-12 is transported into virus-infected cells. In HeLa cells MMP-12 is also translocated to the nucleus, where it binds to the NFKBIA promoter, driving transcription. We also identified dual-regulated substrates that are repressed both by MMP-12 binding to the substrates gene exons and by MMP-12–mediated cleavage of the substrate protein itself. Whereas intracellular MMP-12 mediates NFKBIA transcription, leading to IFN-α secretion and host protection, extracellular MMP-12 cleaves off the IFN-α receptor 2 binding site of systemic IFN-α, preventing an unchecked immune response. Consistent with an unexpected role for MMP-12 in clearing systemic IFN-α, treatment of coxsackievirus type B3–infected wild-type mice with a membrane-impermeable MMP-12 inhibitor elevates systemic IFN-α levels and reduces viral replication in pancreas while sparing intracellular MMP-12. These findings suggest that inhibiting extracellular MMP-12 could be a new avenue for the development of antiviral treatments.


Journal of Biological Chemistry | 2011

Inhibition of matrix metalloproteinase-14 (MMP-14)-mediated cancer cell migration

Kevin Zarrabi; Antoine Dufour; Jian Li; Cem Kuscu; Ashleigh Pulkoski-Gross; Jizu Zhi; Youjun Hu; Nicole S. Sampson; Stanley Zucker; Jian Cao

Matrix metalloproteinases (MMPs) have been shown to be key players in both extracellular matrix remodeling and cell migration during cancer metastasis. MMP-14, a membrane-anchored MMP, in particular, is closely associated with these processes. The hemopexin (PEX) domain of MMP-14 has been proposed as the modulating region involved in the molecular cross-talk that initiates cell migration through homodimerization of MMP-14 as well as heterodimerization with the cell surface adhesion molecule CD44. In this study, minimal regions required for function within the PEX domain were investigated through a series of substitution mutations. Blades I and IV were found to be involved in cell migration. We found that blade IV is necessary for MMP-14 homodimerization and that blade I is required for CD44 MMP-14 heterodimerization. Cross-talk between MMP-14 and CD44 results in phosphorylation of EGF receptor and downstream activation of the MAPK and PI3K signaling pathways involved in cell migration. Based on these mutagenesis analyses, peptides mimicking the essential outermost strand motifs within the PEX domain of MMP-14 were designed. These synthetic peptides inhibit MMP-14-enhanced cell migration in a dose-dependent manner but have no effect on the function of other MMPs. Furthermore, these peptides interfere with cancer metastasis without affecting primary tumor growth. Thus, targeting the MMP-14 hemopexin domain represents a novel approach to inhibit MMP-14-mediated cancer dissemination.


Journal of Cellular Physiology | 2008

Role of the Hemopexin domain of Matrix Metalloproteinases in Cell Migration

Antoine Dufour; Nicole S. Sampson; Stanley Zucker; Jian Cao

The biological functions of matrix metalloproteinases (MMPs) extend beyond extracellular matrix degradation. Non‐proteolytic activities of MMPs are just beginning to be understood. Herein, we evaluated the role of proMMPs in cell migration. Employing a Transwell chamber migration assay, we demonstrated that transfection of COS‐1 cells with various proMMP cDNAs resulted in enhancement of cell migration. Latent MMP‐2 and MMP‐9 enhanced cell migration to a greater extent than latent MMP‐1, ‐3, ‐11 and ‐28. To examine if proteolytic activity is required for MMP‐enhanced cell migration, three experimental approaches, including fluorogenic substrate degradation assay, transfection of cells with catalytically inactive mutant MMP cDNAs, and addition of hydroxamic acid‐derived MMP inhibitors, were employed. We demonstrated that the proteolytic activities of MMPs are not required for MMP‐induced cell migration. To explore the mechanism underlying MMP‐enhanced cell migration, structure‐function relationship of MMP‐9 on cell migration was evaluated. By using a domain swapping approach, we demonstrated that the hemopexin domain of proMMP‐9 plays an important role in cell migration when examined by a transwell chamber assay and by a phagokinetic migration assay. TIMP‐1, which interacts with the hemopexin domain of proMMP‐9, inhibited cell migration, whereas TIMP‐2 had no effect. Employing small molecular inhibitors, MAPK and PI3K pathways were found to be involved in MMP‐9‐mediated cell migration. In conclusion, we demonstrated that MMPs utilize a non‐proteolytic mechanism to enhance epithelial cell migration. We propose that hemopexin homodimer formation is required for the full cell migratory function of proMMP‐9. J. Cell. Physiol. 217: 643–651, 2008.


Journal of Biological Chemistry | 2010

Role of Matrix Metalloproteinase-9 Dimers in Cell Migration DESIGN OF INHIBITORY PEPTIDES

Antoine Dufour; Stanley Zucker; Nicole S. Sampson; Cem Kuscu; Jian Cao

Non-proteolytic activities of matrix metalloproteinases (MMPs) have recently been shown to impact cell migration, but the precise mechanism remains to be understood. We previously demonstrated that the hemopexin (PEX) domain of MMP-9 is a prerequisite for enhanced cell migration. Using a biochemical approach, we now report that dimerization of MMP-9 through the PEX domain appears necessary for MMP-9-enhanced cell migration. Following a series of substitution mutations within the MMP-9 PEX domain, blade IV was shown to be critical for homodimerization, whereas blade I was required for heterodimerization with CD44. Blade I and IV mutants showed diminished enhancement of cell migration compared with wild type MMP-9-transfected cells. Peptides mimicking motifs in the outermost strands of the first and fourth blades of the MMP-9 PEX domain were designed. These peptides efficiently blocked MMP-9 dimer formation and inhibited motility of COS-1 cells overexpressing MMP-9, HT-1080, and MDA-MB-435 cells. Using a shRNA approach, CD44 was found to be a critical molecule in MMP-9-mediated cell migration. Furthermore, an axis involving a MMP-9-CD44-EGFR signaling pathway in cell migration was identified using antibody array and specific receptor tyrosine kinase inhibitors. In conclusion, we dissected the mechanism of pro-MMP-9-enhanced cell migration and developed structure-based inhibitory peptides targeting MMP-9-mediated cell migration.


Nature Communications | 2015

The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling

Theo Klein; Shan-Yu Fung; Florian Renner; Michael Blank; Antoine Dufour; Sohyeong Kang; Madison Bolger-Munro; Joshua Scurll; John J. Priatel; Patrick Schweigler; Samu Melkko; Michael R. Gold; Rosa Viner; Catherine H. Regnier; Stuart E. Turvey; Christopher M. Overall

Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1mut/mut patient with healthy MALT1+/mut family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway—first promoting activation via the CBM—then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.


Journal of Biological Chemistry | 2012

Biochemical Characterization and N-terminomics Analysis of Leukolysin, the Membrane-type 6 Matrix Metalloprotease (MMP25) CHEMOKINE AND VIMENTIN CLEAVAGES ENHANCE CELL MIGRATION AND MACROPHAGE PHAGOCYTIC ACTIVITIES

Amanda E. Starr; Caroline L. Bellac; Antoine Dufour; Verena Goebeler; Christopher M. Overall

Background: Neutrophil-specific membrane-type 6 matrix metalloproteinase (MT6-MMP)/leukolysin has seven known substrates. Results: We identified 72 new MT6-MMP substrates by proteomics and family-wide chemokine screens. Cell membrane-bound vimentin chemoattracts macrophages, whereas MT6-MMP-cleaved vimentin is an “eat-me” signal greatly increasing phagocytosis. Conclusion: MT6-MMP substrates indicate a role for clearance of apoptotic neutrophils. Significance: MT6-MMP cleaves many bioactive proteins important in innate immunity. The neutrophil-specific protease membrane-type 6 matrix metalloproteinase (MT6-MMP)/MMP-25/leukolysin is implicated in multiple sclerosis and cancer yet remains poorly characterized. To characterize the biological roles of MT6-MMP, it is critical to identify its substrates for which only seven are currently known. Here, we biochemically characterized MT6-MMP, profiled its tissue inhibitor of metalloproteinase inhibitory spectrum, performed degradomics analyses, and screened 26 chemokines for cleavage using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. MT6-MMP processes seven each of the CXC and CC chemokine subfamilies. Notably, cleavage of the neutrophil chemoattractant CXCL5 activates the chemokine, thereby increasing its agonist activity, indicating a feed-forward mechanism for neutrophil recruitment. Likewise, cleavage also activated CCL15 and CCL23 to increase monocyte recruitment. Utilizing the proteomics approach proteomic identification of cleavage site specificity (PICS), we identified 286 peptidic cleavage sites spanning from P6 to P6′ from which an unusual glutamate preference in P1 was identified. The degradomics screen terminal amine isotopic labeling of substrates (TAILS), which enriches for neo-N-terminal peptides of cleaved substrates, was used to identify 58 new native substrates in fibroblast secretomes after incubation with MT6-MMP. Vimentin, cystatin C, galectin-1, IGFBP-7, and secreted protein, acidic and rich in cysteine (SPARC) were among those substrates we biochemically confirmed. An extracellular “moonlighting” form of vimentin is a chemoattractant for THP-1 cells, but MT6-MMP cleavage abolished monocyte recruitment. Unexpectedly, the MT6-MMP-cleaved vimentin potently stimulated phagocytosis, which was not a property of the full-length protein. Hence, MT6-MMP regulates neutrophil and monocyte chemotaxis and by generating “eat-me” signals upon vimentin cleavage potentially increases phagocytic removal of neutrophils to resolve inflammation.


Cancer Research | 2011

Small-Molecule Anticancer Compounds Selectively Target the Hemopexin Domain of Matrix Metalloproteinase-9

Antoine Dufour; Nicole S. Sampson; Jian Li; Cem Kuscu; Robert C. Rizzo; Jennifer L. DeLeon; Jizu Zhi; Nadia Jaber; Eric Liu; Stanley Zucker; Jian Cao

Lack of target specificity by existing matrix metalloproteinase (MMP) inhibitors has hindered antimetastatic cancer drug discovery. Inhibitors that bind to noncatalytic sites of MMPs and disrupt protease signaling function have the potential to be more specific and selective. In this work, compounds that target the hemopexin (PEX) domain of MMP-9 were identified using an in silico docking approach and evaluated using biochemical and biological approaches. Two of the selected compounds interfere with MMP-9-mediated cancer cell migration and proliferation in cells expressing exogenous or endogenous MMP-9. Furthermore, these inhibitors do not modulate MMP-9 catalytic activity. The lead compound, N-[4-(difluoromethoxy)phenyl]-2-[(4-oxo-6-propyl-1H-pyrimidin-2-yl)sulfanyl]-acetamide, specifically binds to the PEX domain of MMP-9, but not other MMPs. This interaction between the compound and the PEX domain results in the abrogation of MMP-9 homodimerization and leads to blockage of a downstream signaling pathway required for MMP-9-mediated cell migration. In a tumor xenograft model, this pyrimidinone retarded MDA-MB-435 tumor growth and inhibited lung metastasis. Thus, we have shown for the first time that a novel small-molecule interacts specifically with the PEX domain of MMP-9 and inhibits tumor growth and metastasis by reducing cell migration and proliferation.


Journal of the National Cancer Institute | 2013

Unraveling the Role of KIAA1199, a Novel Endoplasmic Reticulum Protein, in Cancer Cell Migration

Nikki A. Evensen; Cem Kuscu; Hoang-Lan Nguyen; Kevin Zarrabi; Antoine Dufour; Pournima Kadam; Youjun Hu; Ashleigh Pulkoski-Gross; Wadie F. Bahou; Stanley Zucker; Jian Cao

BACKGROUND Cell migration is a critical determinant of cancer metastasis, and a better understanding of the genes involved will lead to the identification of novel targets aimed at preventing cancer dissemination. KIAA1199 has been shown to be upregulated in human cancers, yet its role in cancer progression was hitherto unknown. METHODS Clinical relevance was assessed by examining KIAA1199 expression in human cancer specimens. In vitro and in vivo studies were employed to determine the function of KIAA1199 in cancer progression. Cellular localization of KIAA1199 was microscopically determined. SNAP-tag pull-down assays were used to identify binding partner(s) of KIAA1199. Calcium levels were evaluated using spectrofluorometric and fluorescence resonance energy transfer analyses. Signaling pathways were dissected by Western blotting. Student t test was used to assess differences. All statistical tests were two-sided. RESULTS KIAA1199 was upregulated in invasive breast cancer specimens and inversely associated with patient survival rate. Silencing of KIAA1199 in MDA-MB-435 cancer cells resulted in a mesenchymal-to-epithelial transition that reduced cell migratory ability in vitro (75% reduction; P < .001) and decreased metastasis in vivo (80% reduction; P < .001). Gain-of-function assays further demonstrated the role of KIAA1199 in cell migration. KIAA1199-enhanced cell migration required endoplasmic reticulum (ER) localization, where it forms a stable complex with the chaperone binding immunoglobulin protein (BiP). A novel ER-retention motif within KIAA1199 that is required for its ER localization, BiP interaction, and enhanced cell migration was identified. Mechanistically, KIAA1199 was found to mediate ER calcium leakage, and the resultant increase in cytosolic calcium ultimately led to protein kinase C alpha activation and cell migration. CONCLUSIONS KIAA1199 serves as a novel cell migration-promoting gene and plays a critical role in maintaining cancer mesenchymal status.


Journal of Biological Chemistry | 2012

Biochemical analysis of matrix metalloproteinase activation of chemokines CCL15 and CCL23 and increased glycosaminoglycan binding of CCL16

Amanda E. Starr; Antoine Dufour; Josefine Maier; Christopher M. Overall

Background: Proteases responsible for a CCL15-(25–92) product have not been elucidated. Results: All 14 CC monocyte chemoattractants, including CCL15, are processed by multiple MMPs. Conclusion: MMP-processing of CCL15, CCL23, and CCL16 functional activity is altered by MMP processing. Significance: This is the first study showing MMPs can activate CC chemokines and hence monoycte chemoattraction with potential to propagate inflammation. Leukocyte migration and activation is orchestrated by chemokines, the cleavage of which modulates their activity and glycosaminoglycan binding and thus their roles in inflammation and immunity. Early research identified proteolysis as a means of both activating or inactivating CXC chemokines and inactivating CC chemokines. Recent evidence has shown activating cleavages of the monocyte chemoattractants CCL15 and CCL23 by incubation with synovial fluid, although the responsible proteases could not be identified. Herein we show that CCL15 is processed in human synovial fluid by matrix metalloproteinases (MMPs) and serine proteases. Furthermore, a family-wide investigation of MMP processing of all 14 monocyte-directed CC chemokines revealed that each is precisely cleaved by one or more MMPs. By MALDI-TOF-MS, 149 cleavage sites were sequenced including the first reported instance of CCL1, CCL16, and CCL17 proteolysis. Full-length CCL15-(1–92) and CCL23-(1–99) were cleaved within their unique 31 and 32-amino acid residue extended amino termini, respectively. Unlike other CCL chemokines that lose activity and become receptor antagonists upon MMP cleavage, the prominent MMP-processed products CCL15-(25–92, 28–92) and CCL23-(26–99) are stronger agonists in calcium flux and Transwell CC receptor transfectant and monocytic THP-1 migration assays. MMP processing of CCL16-(1–97) in its extended carboxyl terminus yields two products, CCL16-(8–77) and CCL16-(8–85), with both showing unexpected enhanced glycosaminoglycan binding. Hence, our study reveals for the first time that MMPs activate the long amino-terminal chemokines CCL15 and CCL23 to potent forms that have potential to increase monocyte recruitment during inflammation.


Journal of Physical Chemistry B | 2009

Comparison of the Structure and Dynamics of the Antibiotic Peptide Polymyxin B and the Inactive Nonapeptide in Aqueous Trifluoroethanol by NMR Spectroscopy

Jeffrey J. Meredith; Antoine Dufour; Martha D. Bruch

The structure and dynamics of polymyxin B (PxB), an N-acylated cyclic decapeptide that displays antimicrobial activity against Gram-negative bacteria, is characterized by NMR and compared to results for the inactive nonapeptide, which is missing the N-terminal amino acid along with the attached acyl chain. Aqueous trifluoroethanol (TFE) was chosen as the solvent since the overall structure of PxB in TFE is similar to the structure when bound to vesicles. No differences were observed between the two peptides for (1)H H(alpha) chemical shifts or patterns of cross peaks in NOESY spectra, indicating that the overall structures are quite similar. The sign and intensity of NOESY spectra obtained at different temperatures were used to assess the relative mobility of the peptides. For both peptides, differential mobility is observed in different parts of the molecule, with greater mobility observed for the linear portion than the ring and faster motion seen for the side chains than the peptide backbone. However, all motion is faster in the nonapeptide, indicating that the presence of the N-terminal acyl chain restricts the mobility of PxB compared to the nonapeptide, which lacks this structural feature. For both peptides, differential mobility is also observed within the cyclic portion of the peptide. This supports a proposed model whereby the more rigid residues serve as pivot points, allowing the ring conformation to change in response to different binding partners. However, conformational flexibility within the cyclic ring is not sufficient for antimicrobial activity since both the active and inactive peptides exhibit the same flexibility. The N-terminal acyl chain on PxB, which is essential for activity, exhibits rapid, independent motion, and this flexibility may facilitate penetration of the outer membrane.

Collaboration


Dive into the Antoine Dufour's collaboration.

Top Co-Authors

Avatar

Jian Cao

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cem Kuscu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Overall

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Li

Stony Brook University

View shared research outputs
Researchain Logo
Decentralizing Knowledge