Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cem Kuscu is active.

Publication


Featured researches published by Cem Kuscu.


Journal of Biological Chemistry | 2011

Inhibition of matrix metalloproteinase-14 (MMP-14)-mediated cancer cell migration

Kevin Zarrabi; Antoine Dufour; Jian Li; Cem Kuscu; Ashleigh Pulkoski-Gross; Jizu Zhi; Youjun Hu; Nicole S. Sampson; Stanley Zucker; Jian Cao

Matrix metalloproteinases (MMPs) have been shown to be key players in both extracellular matrix remodeling and cell migration during cancer metastasis. MMP-14, a membrane-anchored MMP, in particular, is closely associated with these processes. The hemopexin (PEX) domain of MMP-14 has been proposed as the modulating region involved in the molecular cross-talk that initiates cell migration through homodimerization of MMP-14 as well as heterodimerization with the cell surface adhesion molecule CD44. In this study, minimal regions required for function within the PEX domain were investigated through a series of substitution mutations. Blades I and IV were found to be involved in cell migration. We found that blade IV is necessary for MMP-14 homodimerization and that blade I is required for CD44 MMP-14 heterodimerization. Cross-talk between MMP-14 and CD44 results in phosphorylation of EGF receptor and downstream activation of the MAPK and PI3K signaling pathways involved in cell migration. Based on these mutagenesis analyses, peptides mimicking the essential outermost strand motifs within the PEX domain of MMP-14 were designed. These synthetic peptides inhibit MMP-14-enhanced cell migration in a dose-dependent manner but have no effect on the function of other MMPs. Furthermore, these peptides interfere with cancer metastasis without affecting primary tumor growth. Thus, targeting the MMP-14 hemopexin domain represents a novel approach to inhibit MMP-14-mediated cancer dissemination.


Journal of Biological Chemistry | 2010

Role of Matrix Metalloproteinase-9 Dimers in Cell Migration DESIGN OF INHIBITORY PEPTIDES

Antoine Dufour; Stanley Zucker; Nicole S. Sampson; Cem Kuscu; Jian Cao

Non-proteolytic activities of matrix metalloproteinases (MMPs) have recently been shown to impact cell migration, but the precise mechanism remains to be understood. We previously demonstrated that the hemopexin (PEX) domain of MMP-9 is a prerequisite for enhanced cell migration. Using a biochemical approach, we now report that dimerization of MMP-9 through the PEX domain appears necessary for MMP-9-enhanced cell migration. Following a series of substitution mutations within the MMP-9 PEX domain, blade IV was shown to be critical for homodimerization, whereas blade I was required for heterodimerization with CD44. Blade I and IV mutants showed diminished enhancement of cell migration compared with wild type MMP-9-transfected cells. Peptides mimicking motifs in the outermost strands of the first and fourth blades of the MMP-9 PEX domain were designed. These peptides efficiently blocked MMP-9 dimer formation and inhibited motility of COS-1 cells overexpressing MMP-9, HT-1080, and MDA-MB-435 cells. Using a shRNA approach, CD44 was found to be a critical molecule in MMP-9-mediated cell migration. Furthermore, an axis involving a MMP-9-CD44-EGFR signaling pathway in cell migration was identified using antibody array and specific receptor tyrosine kinase inhibitors. In conclusion, we dissected the mechanism of pro-MMP-9-enhanced cell migration and developed structure-based inhibitory peptides targeting MMP-9-mediated cell migration.


Cancer Research | 2011

Small-Molecule Anticancer Compounds Selectively Target the Hemopexin Domain of Matrix Metalloproteinase-9

Antoine Dufour; Nicole S. Sampson; Jian Li; Cem Kuscu; Robert C. Rizzo; Jennifer L. DeLeon; Jizu Zhi; Nadia Jaber; Eric Liu; Stanley Zucker; Jian Cao

Lack of target specificity by existing matrix metalloproteinase (MMP) inhibitors has hindered antimetastatic cancer drug discovery. Inhibitors that bind to noncatalytic sites of MMPs and disrupt protease signaling function have the potential to be more specific and selective. In this work, compounds that target the hemopexin (PEX) domain of MMP-9 were identified using an in silico docking approach and evaluated using biochemical and biological approaches. Two of the selected compounds interfere with MMP-9-mediated cancer cell migration and proliferation in cells expressing exogenous or endogenous MMP-9. Furthermore, these inhibitors do not modulate MMP-9 catalytic activity. The lead compound, N-[4-(difluoromethoxy)phenyl]-2-[(4-oxo-6-propyl-1H-pyrimidin-2-yl)sulfanyl]-acetamide, specifically binds to the PEX domain of MMP-9, but not other MMPs. This interaction between the compound and the PEX domain results in the abrogation of MMP-9 homodimerization and leads to blockage of a downstream signaling pathway required for MMP-9-mediated cell migration. In a tumor xenograft model, this pyrimidinone retarded MDA-MB-435 tumor growth and inhibited lung metastasis. Thus, we have shown for the first time that a novel small-molecule interacts specifically with the PEX domain of MMP-9 and inhibits tumor growth and metastasis by reducing cell migration and proliferation.


Journal of the National Cancer Institute | 2013

Unraveling the Role of KIAA1199, a Novel Endoplasmic Reticulum Protein, in Cancer Cell Migration

Nikki A. Evensen; Cem Kuscu; Hoang-Lan Nguyen; Kevin Zarrabi; Antoine Dufour; Pournima Kadam; Youjun Hu; Ashleigh Pulkoski-Gross; Wadie F. Bahou; Stanley Zucker; Jian Cao

BACKGROUND Cell migration is a critical determinant of cancer metastasis, and a better understanding of the genes involved will lead to the identification of novel targets aimed at preventing cancer dissemination. KIAA1199 has been shown to be upregulated in human cancers, yet its role in cancer progression was hitherto unknown. METHODS Clinical relevance was assessed by examining KIAA1199 expression in human cancer specimens. In vitro and in vivo studies were employed to determine the function of KIAA1199 in cancer progression. Cellular localization of KIAA1199 was microscopically determined. SNAP-tag pull-down assays were used to identify binding partner(s) of KIAA1199. Calcium levels were evaluated using spectrofluorometric and fluorescence resonance energy transfer analyses. Signaling pathways were dissected by Western blotting. Student t test was used to assess differences. All statistical tests were two-sided. RESULTS KIAA1199 was upregulated in invasive breast cancer specimens and inversely associated with patient survival rate. Silencing of KIAA1199 in MDA-MB-435 cancer cells resulted in a mesenchymal-to-epithelial transition that reduced cell migratory ability in vitro (75% reduction; P < .001) and decreased metastasis in vivo (80% reduction; P < .001). Gain-of-function assays further demonstrated the role of KIAA1199 in cell migration. KIAA1199-enhanced cell migration required endoplasmic reticulum (ER) localization, where it forms a stable complex with the chaperone binding immunoglobulin protein (BiP). A novel ER-retention motif within KIAA1199 that is required for its ER localization, BiP interaction, and enhanced cell migration was identified. Mechanistically, KIAA1199 was found to mediate ER calcium leakage, and the resultant increase in cytosolic calcium ultimately led to protein kinase C alpha activation and cell migration. CONCLUSIONS KIAA1199 serves as a novel cell migration-promoting gene and plays a critical role in maintaining cancer mesenchymal status.


PLOS ONE | 2012

Transcriptional and Epigenetic Regulation of KIAA1199 Gene Expression in Human Breast Cancer

Cem Kuscu; Nikki A. Evensen; Deborah Kim; Youjun Hu; Stanley Zucker; Jian Cao

Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5′-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5′-primer extension study with 5′RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1), Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.


PLOS ONE | 2012

Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking

Jian Li; Stanley Zucker; Ashleigh Pulkoski-Gross; Cem Kuscu; Mihriban Karaayvaz; Jingfang Ju; Herui Yao; Erwei Song; Jian Cao

Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis.


Development Genes and Evolution | 2006

Alternatively spliced Robo2 isoforms in zebrafish and rat

Ertugrul Dalkic; Cem Kuscu; Ceren Sucularli; Iraz T. Aydin; Kamil Can Akcali; Ozlen Konu

Robo2, a member of the robo gene family, functions as a repulsive axon guidance receptor as well as a regulator of cell migration and tissue morphogenesis in different taxa. In this study, a novel isoform of the zebrafish robo2 (robo2_tv2), which included an otherwise alternatively spliced exon (CAE), has been characterized. Robo2_tv2 is expressed differentially in most non-neuronal tissues of adult zebrafish whereas robo2_tv1 expression to a great extent is restricted to the brain and eye. In zebrafish, robo2_tv2 exhibits a very-low-level basal expression starting from 1 day post fertilization until the mid-larval stages, at which time its expression increases dramatically and could be detected throughout adulthood. Our findings demonstrate that the amino acid sequence coded by CAE of the robo2 gene is highly conserved between zebrafish and mammals, and also contains conserved motifs shared with robo1 and robo4 but not with robo3. Furthermore, we provide an account of differential transcription of the CAE homolog in various tissues of the adult rat. These results suggest that the alternatively spliced robo2 isoforms may exhibit tissue specificity.


Gene Therapy | 2009

Transgene-specific host responses in cutaneous gene therapy: the role of cells expressing the transgene

Zhenghua Zhang; Cem Kuscu; Soosan Ghazizadeh

A major issue in long-term gene therapy is host immune responses to therapeutic cells when transgene encodes a potential antigen. The nature of these responses depends on several factors including the type of cell and tissue expressing the transgene. Keratinocytes and fibroblasts, which are known to display distinct immunogenic profiles, are both potential targets for transgene expression in cutaneous gene therapy. However, whether there is an immunological advantage in targeting one cell type over the other is not known. To study the effect of cell type on transgene-specific host responses independent of antigen levels or methods of gene transfer and transplantation, we used a skin transplantation model in which transgene expression can be targeted transgene to either keratinocytes or fibroblasts. Although targeting an antigen to either cell type resulted in the induction of immune responses, these responses differed significantly. Transgenic keratinocytes were rejected acutely by a dominant Th2 response, while in the majority of grafted animals transgenic fibroblasts failed to induce acute rejection despite the induction of Th1 type inflammation in the graft. In a small number of mice, transgenic fibroblasts persisted for at least 20 weeks despite elicitation of antigen-specific responses. Therefore, fibroblasts may be an immunologically preferred target over keratinocytes for cutaneous gene therapy.


Molecular Medicine Reports | 2016

Functionally conserved effects of rapamycin exposure on zebrafish.

Ceren Sucularli; Huma Shehwana; Cem Kuscu; Dilay Ciglidag Dungul; Hilal Özdağ; Ozlen Konu

Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.


Atlas of genetics and cytogenetics in oncology and haematology | 2011

MMP14 (matrix metallopeptidase 14 (membrane-inserted))

Cem Kuscu; Nikki A. Evensen; Jian Cao

Review on MMP14 (matrix metallopeptidase 14 (membrane-inserted)), with data on DNA, on the protein encoded, and where the gene is implicated.

Collaboration


Dive into the Cem Kuscu's collaboration.

Top Co-Authors

Avatar

Jian Cao

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Li

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Youjun Hu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge