Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antoine Margeot is active.

Publication


Featured researches published by Antoine Margeot.


Genome Biology | 2011

Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

Christian P. Kubicek; Alfredo Herrera-Estrella; Diego Martinez; Irina S. Druzhinina; Michael R. Thon; Susanne Zeilinger; Sergio Casas-Flores; Benjamin A. Horwitz; Prasun K. Mukherjee; Mala Mukherjee; László Kredics; Luis David Alcaraz; Andrea Aerts; Zsuzsanna Antal; Lea Atanasova; Mayte Guadalupe Cervantes-Badillo; Jean F. Challacombe; Olga Chertkov; Kevin McCluskey; Fanny Coulpier; Nandan Deshpande; Hans von Döhren; Daniel J. Ebbole; Edgardo U. Esquivel-Naranjo; Erzsébet Fekete; Michel Flipphi; Fabian Glaser; Elida Yazmín Gómez-Rodríguez; Sabine Gruber; Cliff Han

BackgroundMycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.ResultsHere we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.ConclusionsThe data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.


Current Opinion in Biotechnology | 2009

New improvements for lignocellulosic ethanol

Antoine Margeot; Bärbel Hahn-Hägerdal; Maria Edlund; Raphael Slade; Frédéric Monot

The use of lignocellulosic biomass for the production of biofuels will be unavoidable if liquid fossil fuels are to be replaced by renewable and sustainable alternatives. Ethanol accounts for the majority of biofuel use worldwide, and the prospect of its biological production from abundant lignocellulosic feedstocks is attractive. The recalcitrance of these raw materials still renders proposed processes complex and costly, but there are grounds for optimism. The application of new, engineered enzyme systems for cellulose hydrolysis, the construction of inhibitor-tolerant pentose-fermenting industrial yeast strains, combined with optimized process integration promise significant improvements. The opportunity to test these advances in pilot plants paves the way for large-scale units. This review summarizes recent progress in this field, including the validation at pilot scale, and the economic and environmental impacts of this production pathway.


Biotechnology for Biofuels | 2008

Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains

Isabelle Herpoël-Gimbert; Antoine Margeot; Alain Dolla; Gwénaël Jan; Daniel Mollé; Sabrina Lignon; Hughes Mathis; Jean-Claude Sigoillot; Frédéric Monot; Marcel Asther

BackgroundDue to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly been researched in various fields of white biotechnology, especially in biofuel production from lignocellulosic biomass. The commercial enzyme mixtures produced at industrial scales are not well characterized, and their proteinaceous components are poorly identified and quantified. The development of proteomic methods has made it possible to comprehensively overview the enzymes involved in lignocellulosic biomass degradation which are secreted under various environmental conditions.ResultsThe protein composition of the secretome produced by industrial T. reesei (strain CL847) grown on a medium promoting the production of both cellulases and hemicellulases was explored using two-dimensional electrophoresis and MALDI-TOF or LC-MS/MS protein identification. A total of 22 protein species were identified. As expected, most of them are potentially involved in biomass degradation. The 2D map obtained was then used to compare the secretomes produced by CL847 and another efficient cellulolytic T. reesei strain, Rut-C30, the reference cellulase-overproducing strain using lactose as carbon source and inducer of cellulases.ConclusionThis study provides the most complete mapping of the proteins secreted by T. reesei to date. We report on the first use of proteomics to compare secretome composition between two cellulase-overproducing strains Rut-C30 and CL847 grown under similar conditions. Comparison of protein patterns in both strains highlighted many unexpected differences between cellulase cocktails. The results demonstrate that 2D electrophoresis is a promising tool for studying cellulase production profiles, whether for industrial characterization of an entire secretome or for a more fundamental study on cellulase expression at genome-wide scale.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing

Stéphane Le Crom; Wendy Schackwitz; Len A. Pennacchio; Jon K. Magnuson; David E. Culley; James R. Collett; Joel Martin; Irina S. Druzhinina; Hugues Mathis; Frédéric Monot; Bernhard Seiboth; Barbara Cherry; Michael Rey; Randy M. Berka; Christian P. Kubicek; Scott E. Baker; Antoine Margeot

Trichoderma reesei (teleomorph Hypocrea jecorina) is the main industrial source of cellulases and hemicellulases harnessed for the hydrolysis of biomass to simple sugars, which can then be converted to biofuels such as ethanol and other chemicals. The highly productive strains in use today were generated by classical mutagenesis. To learn how cellulase production was improved by these techniques, we performed massively parallel sequencing to identify mutations in the genomes of two hyperproducing strains (NG14, and its direct improved descendant, RUT C30). We detected a surprisingly high number of mutagenic events: 223 single nucleotides variants, 15 small deletions or insertions, and 18 larger deletions, leading to the loss of more than 100 kb of genomic DNA. From these events, we report previously undocumented non-synonymous mutations in 43 genes that are mainly involved in nuclear transport, mRNA stability, transcription, secretion/vacuolar targeting, and metabolism. This homogeneity of functional categories suggests that multiple changes are necessary to improve cellulase production and not simply a few clear-cut mutagenic events. Phenotype microarrays show that some of these mutations result in strong changes in the carbon assimilation pattern of the two mutants with respect to the wild-type strain QM6a. Our analysis provides genome-wide insights into the changes induced by classical mutagenesis in a filamentous fungus and suggests areas for the generation of enhanced T. reesei strains for industrial applications such as biofuel production.


BMC Genomics | 2011

The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: A master regulator of carbon assimilation

Thomas Portnoy; Antoine Margeot; Rita Linke; Lea Atanasova; Erzsébet Fekete; Erzsébet Sándor; Lukas Hartl; Levente Karaffa; Irina S. Druzhinina; Bernhard Seiboth; Stéphane Le Crom; Christian P. Kubicek

BackgroundThe identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known.ResultsHere, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina) by profiling transcription in a wild-type and a delta-cre1 mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes.ConclusionsOur study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.


Eukaryotic Cell | 2011

Differential Regulation of the Cellulase Transcription Factors XYR1, ACE2, and ACE1 in Trichoderma reesei Strains Producing High and Low Levels of Cellulase

Thomas Portnoy; Antoine Margeot; Stéphane Le Crom; Fadhel Ben Chaabane; Rita Linke; Bernhard Seiboth; Christian P. Kubicek

ABSTRACT Due to its capacity to produce large amounts of cellulases, Trichoderma reesei is increasingly being investigated for second-generation biofuel production from lignocellulosic biomass. The induction mechanisms of T. reesei cellulases have been described recently, but the regulation of the genes involved in their transcription has not been studied thoroughly. Here we report the regulation of expression of the two activator genes xyr1 and ace2, and the corepressor gene ace1, during the induction of cellulase biosynthesis by the inducer lactose in T. reesei QM 9414, a strain producing low levels of cellulase (low producer). We show that all three genes are induced by lactose. xyr1 was also induced by d-galactose, but this induction was independent of d-galactose metabolism. Moreover, ace1 was carbon catabolite repressed, whereas full induction of xyr1 and ace2 in fact required CRE1. Significant differences in these regulatory patterns were observed in the high-producer strain RUT C30 and the hyperproducer strain T. reesei CL847. These observations suggest that a strongly elevated basal transcription level of xyr1 and reduced upregulation of ace1 by lactose may have been important for generating the hyperproducer strain and that thus, these genes are major control elements of cellulase production.


Nature Communications | 2014

High-quality genome (re)assembly using chromosomal contact data

Hervé Marie-Nelly; Martial Marbouty; Axel Cournac; Jean-François Flot; Gianni Liti; Dante Poggi Dp Parodi; Sylvie Syan; Nancy Guillén; Antoine Margeot; Christophe Zimmer; Romain Koszul

Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left ‘unfinished.’ Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm—named GRAAL—generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches.


BMC Genomics | 2015

Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype

Alexander Lichius; Frédérique Bidard; Franziska Buchholz; Stéphane Le Crom; Joel Martin; Wendy Schackwitz; Tina Austerlitz; Igor V. Grigoriev; Scott E. Baker; Antoine Margeot; Bernhard Seiboth; Christian P. Kubicek

BackgroundTrichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a.ResultsIn QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level.ConclusionThe missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype.


Nucleic Acids Research | 2010

Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments

Laurent Jourdren; Aurélie Duclos; Christian Brion; Thomas Portnoy; Hugues Mathis; Antoine Margeot; Stéphane Le Crom

Despite the development of new high-throughput sequencing techniques, microarrays are still attractive tools to study small genome organisms, thanks to sample multiplexing and high-feature densities. However, the oligonucleotide design remains a delicate step for most users. A vast array of software is available to deal with this problem, but each program is developed with its own strategy, which makes the choice of the best solution difficult. Here we describe Teolenn, a universal probe design workflow developed with a flexible and customizable module organization allowing fixed or variable length oligonucleotide generation. In addition, our software is able to supply quality scores for each of the designed probes. In order to assess the relevance of these scores, we performed a real hybridization using a tiling array designed against the Trichoderma reesei fungus genome. We show that our scoring pipeline correlates with signal quality for 97.2% of all the designed probes, allowing for a posteriori comparisons between quality scores and signal intensities. This result is useful in discarding any bad scoring probes during the design step in order to get high-quality microarrays. Teolenn is available at http://transcriptome.ens.fr/teolenn/.


Molecular Microbiology | 2015

The ß‐importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei

Sara Ghassemi; Alexander Lichius; Frédérique Bidard; Sophie Lemoine; Marie-Noëlle Rossignol; Silvia Herold; Bernhard Seiboth; Eduardo A. Espeso; Antoine Margeot; Christian P. Kubicek

The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi‐)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo‐cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene‐deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP‐XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase‐inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down‐regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process.

Collaboration


Dive into the Antoine Margeot's collaboration.

Top Co-Authors

Avatar

Christian P. Kubicek

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Seiboth

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina S. Druzhinina

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Baker

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge