Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Guy Berrin is active.

Publication


Featured researches published by Jean-Guy Berrin.


Applied and Environmental Microbiology | 2013

Cello-Oligosaccharide Oxidation Reveals Differences between Two Lytic Polysaccharide Monooxygenases (Family GH61) from Podospora anserina

Mathieu Bey; Simeng Zhou; Laetitia Poidevin; Bernard Henrissat; Pedro M. Coutinho; Jean-Guy Berrin; Jean-Claude Sigoillot

ABSTRACT The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnabarinus on cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference between PaGH61A and PaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination of PaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties of PaGH61A and PaGH61B and their effect on the interaction with CDH are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.


Biotechnology for Biofuels | 2015

Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina.

Chloé Bennati-Granier; Sona Garajova; Charlotte Champion; Sacha Grisel; Mireille Haon; Simeng Zhou; Mathieu Fanuel; David Ropartz; Hélène Rogniaux; Isabelle Gimbert; Eric Record; Jean-Guy Berrin

BackgroundThe understanding of enzymatic polysaccharide degradation has progressed intensely in the past few years with the identification of a new class of fungal-secreted enzymes, the lytic polysaccharide monooxygenases (LPMOs) that enhance cellulose conversion. In the fungal kingdom, saprotrophic fungi display a high number of genes encoding LPMOs from family AA9 but the functional relevance of this redundancy is not fully understood.ResultsIn this study, we investigated a set of AA9 LPMOs identified in the secretomes of the coprophilous ascomycete Podospora anserina, a biomass degrader of recalcitrant substrates. Their activity was assayed on cellulose in synergy with the cellobiose dehydrogenase from the same organism. We showed that the total release of oxidized oligosaccharides from cellulose was higher for PaLPMO9A, PaLPMO9E, and PaLPMO9H that harbored a carbohydrate-binding module from the family CBM1. Investigation of their regioselective mode of action revealed that PaLPMO9A and PaLPMO9H oxidatively cleaved at both C1 and C4 positions while PaLPMO9E released only C1-oxidized products. Rapid cleavage of cellulose was observed using PaLPMO9H that was the most versatile in terms of substrate specificity as it also displayed activity on cello-oligosaccharides and β-(1,4)-linked hemicellulose polysaccharides (e.g., xyloglucan, glucomannan).ConclusionsThis study provides insights into the mode of cleavage and substrate specificities of fungal AA9 LPMOs that will facilitate their application for the development of future biorefineries.


Biotechnology Letters | 2008

Factors affecting xylanase functionality in the degradation of arabinoxylans.

Jean-Guy Berrin; Nathalie Juge

Endo-β-1,4-xylanases are key enzymes in the degradation of arabinoxylans, the main non-starch polysaccharides from grain cell walls. Due to the heterogeneity of arabinoxylans, xylanases with different characteristics are required in industrial applications but the choice of the enzyme is still largely empirical. Although the classification into glycoside hydrolase families greatly helped to derive mechanistic information on the catalytic and substrate specificity of xylanases, other factors e.g. their sensitivity to endogenous inhibitors, the presence of carbohydrate-binding module(s) and their degree of selectivity towards soluble versus insoluble substrate may play a role in determining the functionality of these enzymes in the degradation of arabinoxylans.


Journal of Biological Chemistry | 2013

Structural and Biochemical Analyses of Glycoside Hydrolase Families 5 and 26 β-(1,4)-Mannanases from Podospora anserina Reveal Differences upon Manno-oligosaccharide Catalysis

Marie Couturier; Alain Roussel; Anna Rosengren; Philippe Leone; Henrik Stålbrand; Jean-Guy Berrin

Background: Fungal mannanases contribute to enzymatic degradation of lignocellulose. Results: New fungal mannanases reveal striking differences in substrate specificities. A rigid linker tightly connects the family 26 glycoside hydrolase to its binding module. Conclusion: Podospora anserina mannanases display differences in substrate binding modes, transglycosylation activity, and modular organization. Significance: Information on the structure-function relationships of fungal mannanases is essential to improve the comprehension of biomass deconstruction. The microbial deconstruction of the plant cell wall is a key biological process that is of increasing importance with the development of a sustainable biofuel industry. The glycoside hydrolase families GH5 (PaMan5A) and GH26 (PaMan26A) endo-β-1,4-mannanases from the coprophilic ascomycete Podospora anserina contribute to the enzymatic degradation of lignocellulosic biomass. In this study, P. anserina mannanases were further subjected to detailed comparative analysis of their substrate specificities, active site organization, and transglycosylation capacity. Although PaMan5A displays a classical mode of action, PaMan26A revealed an atypical hydrolysis pattern with the release of mannotetraose and mannose from mannopentaose resulting from a predominant binding mode involving the −4 subsite. The crystal structures of PaMan5A and PaMan26A were solved at 1.4 and 2.85 Å resolution, respectively. Analysis of the PaMan26A structure supported strong interaction with substrate at the −4 subsite mediated by two aromatic residues Trp-244 and Trp-245. The PaMan26A structure appended to its family 35 carbohydrate binding module revealed a short and proline-rich rigid linker that anchored together the catalytic and the binding modules.


Bioresource Technology | 2012

Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw.

Holly Ravalason; Sacha Grisel; Didier Chevret; Anne Favel; Jean-Guy Berrin; Jean-Claude Sigoillot; Isabelle Herpoël-Gimbert

Fusarium verticillioides secretes enzymes (secretome), some of which might be potentially useful for saccharification of lignocellulosic biomass since supplementation of commercial cellulases from Trichoderma reesei with the F. verticillioides secretome improved the enzymatic release of glucose, xylose and arabinose from wheat straw by 24%, 88% and 68%, respectively. Determination of enzymatic activities revealed a broad range of hemicellulases and pectinases poorly represented in commercial cocktails. Proteomics approaches identified 57 proteins potentially involved in lignocellulose breakdown among a total of 166 secreted proteins. This analysis highlighted the presence of carbohydrate-active enzymes (CAZymes) targeting pectin (from glycoside hydrolase families GH5, GH27, GH28, GH43, GH51, GH54, GH62, GH88 and GH93, polysaccharide lyase family PL4 and carbohydrate esterase family CE8) and hemicelluloses (from glycoside hydrolase families GH3, GH10, GH11, GH30, GH39, GH43 and GH67). These data provide a first step towards the identification of candidates to supplement T. reesei enzyme preparations for lignocellulose hydrolysis.


Trends in Biochemical Sciences | 2016

Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass

Vijai Kumar Gupta; Christian P. Kubicek; Jean-Guy Berrin; David W. Wilson; Marie Couturier; Alex Berlin; Edivaldo Ximenes Ferreira Filho; Thaddeus C. Ezeji

Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries.


Nature Communications | 2013

Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp

Yonathan Arfi; Didier Chevret; Bernard Henrissat; Jean-Guy Berrin; Anthony Levasseur; Eric Record

Fungi are important for biomass degradation processes in mangrove forests. Given the presence of sea water in these ecosystems, mangrove fungi are adapted to high salinity. Here we isolate Pestalotiopsis sp. NCi6, a halotolerant and lignocellulolytic mangrove fungus of the order Xylariales. We study its lignocellulolytic enzymes and analyse the effects of salinity on its secretomes. De novo transcriptome sequencing and assembly indicate that this fungus possesses of over 400 putative lignocellulolytic enzymes, including a large fraction involved in lignin degradation. Proteomic analyses of the secretomes suggest that the presence of salt modifies lignocellulolytic enzyme composition, with an increase in the secretion of xylanases and cellulases and a decrease in the production of oxidases. As a result, cellulose and hemicellulose hydrolysis is enhanced but lignin breakdown is reduced. This study highlights the adaptation to salt of mangrove fungi and their potential for biotechnological applications.


Applied Microbiology and Biotechnology | 2007

Substrate and product hydrolysis specificity in family 11 glycoside hydrolases : an analysis of Penicillium funiculosum and Penicillium griseofulvum xylanases

Jean-Guy Berrin; El Hassan Ajandouz; Jacques Georis; Filip Arnaut; Nathalie Juge

Two genes encoding family 11 endo-(1,4)-β-xylanases from Penicillium griseofulvum (PgXynA) and Penicillium funiculosum (PfXynC) were heterologously expressed in Escherichia coli as glutathione S-transferase fusion proteins, and the recombinant enzymes were purified after affinity chromatography and proteolysis. PgXynA and PfXynC were identical to their native counterparts in terms of molecular mass, pI, N-terminal sequence, optimum pH, and enzymatic activity towards arabinoxylan. Further investigation of the rate and pattern of hydrolysis of PgXynA and PfXynC on wheat soluble arabinoxylan showed the predominant production of xylotriose and xylobiose as end products. The initial rate data from the hydrolysis of short xylo-oligosaccharides indicated that the catalytic efficiency increased with increasing chain length (n) of oligomer up to n = 6, suggesting that the specificity region of both Penicillium xylanases spans about six xylose units. In contrast to PfXynC, PgXynA was found insensitive to the wheat xylanase inhibitor protein XIP-I.


Scientific Reports | 2016

Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose

Sona Garajova; Yann Mathieu; Maria Rosa Beccia; Chloé Bennati-Granier; Frédéric Biaso; Mathieu Fanuel; David Ropartz; Bruno Guigliarelli; Eric Record; Hélène Rogniaux; Bernard Henrissat; Jean-Guy Berrin

The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMOs) that carry out oxidative cleavage of polysaccharides. These very powerful enzymes are abundant in fungal saprotrophs. LPMOs require activation by electrons that can be provided by cellobiose dehydrogenases (CDHs), but as some fungi lack CDH-encoding genes, other recycling enzymes must exist. We investigated the ability of AA3_2 flavoenzymes secreted under lignocellulolytic conditions to trigger oxidative cellulose degradation by AA9 LPMOs. Among the flavoenzymes tested, we show that glucose dehydrogenase and aryl-alcohol quinone oxidoreductases are catalytically efficient electron donors for LPMOs. These single-domain flavoenzymes display redox potentials compatible with electron transfer between partners. Our findings extend the array of enzymes which regulate the oxidative degradation of cellulose by lignocellulolytic fungi.


Applied and Environmental Microbiology | 2012

Exploring the Natural Fungal Biodiversity of Tropical and Temperate Forests toward Improvement of Biomass Conversion

Jean-Guy Berrin; David Navarro; Marie Couturier; Caroline Olivé; Sacha Grisel; Mireille Haon; Sabine Taussac; Christian Lechat; Régis Courtecuisse; Anne Favel; Pedro M. Coutinho; Laurence Lesage-Meessen

ABSTRACT In this study, natural fungal diversity in wood-decaying species was explored for biomass deconstruction. In 2007 and 2008, fungal isolates were collected in temperate forests mainly from metropolitan France and in tropical forests mainly from French Guiana. We recovered and identified 74 monomorph cultures using morphological and molecular identification tools. Following production of fungal secretomes under inductive conditions, we evaluated the capacity of these fungal strains to potentiate a commercial Trichoderma reesei cellulase cocktail for the release of soluble sugars from biomass. The secretome of 19 isolates led to an improvement in biomass conversion of at least 23%. Of the isolates, the Trametes gibbosa BRFM 952 (Banque de Ressources Fongiques de Marseille) secretome performed best, with 60% improved conversion, a feature that was not universal to the Trametes and related genera. Enzymatic characterization of the T. gibbosa BRFM 952 secretome revealed an unexpected high activity on crystalline cellulose, higher than that of the T. reesei cellulase cocktail. This report highlights the interest in a systematic high-throughput assessment of collected fungal biodiversity to improve the enzymatic conversion of lignocellulosic biomass. It enabled the unbiased identification of new fungal strains issued from biodiversity with high biotechnological potential.

Collaboration


Dive into the Jean-Guy Berrin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mireille Haon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

David Navarro

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Chevret

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Record

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Marie-Noëlle Rosso

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Claude Sigoillot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie Couturier

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge