Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anton Camacho is active.

Publication


Featured researches published by Anton Camacho.


The Lancet | 2015

Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial

Ana Maria Henao-Restrepo; Ira M. Longini; Matthias Egger; Natalie E Dean; W. John Edmunds; Anton Camacho; Miles W. Carroll; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Stefanie Hossmann; Mandy Kader Kondé; Souleymane Kone; Eeva Kuisma; Myron M. Levine; Sema Mandal; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari; Conall H. Watson; Sakoba Keita; Marie Paule Kieny; John-Arne Røttingen

BACKGROUND A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.


The Lancet | 2017

Efficacy and Effectiveness of an rVSV-Vectored Vaccine in Preventing Ebola Virus Disease: Final Results from the Guinea Ring Vaccination, Open-Label, Cluster-Randomised Trial (Ebola Ça Suffit!)

Ana Maria Henao-Restrepo; Anton Camacho; Ira M. Longini; Conall H. Watson; W. John Edmunds; Matthias Egger; Miles W. Carroll; Natalie E Dean; Ibrahima Dina Diatta; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Pierre-Stéphane Gsell; Stefanie Hossmann; Sara Viksmoen Watle; Mandy Kader Kondé; Sakoba Keita; Souleymane Kone; Eewa Kuisma; Myron M. Levine; Sema Mandal; Thomas Mauget; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari

Summary Background rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. Methods We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6–17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. Findings In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9–100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3–100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. Interpretation The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. Funding WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norways GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).


Epidemics | 2014

Potential for large outbreaks of Ebola virus disease

Anton Camacho; Adam J. Kucharski; Sebastian Funk; Joel G. Breman; Peter Piot; Wj Edmunds

Highlights • We revisited data from the first known Ebola outbreak in Zaire in 1976.• Using a mathematical model, we estimated transmission rates in different settings.• Analysis suggests the person-to-person R0 was 1.34 (95% CI: 0.92–2.11).• Epidemiological conditions in 1976 could have generated a larger outbreak.


PLOS Currents | 2015

Temporal Changes in Ebola Transmission in Sierra Leone and Implications for Control Requirements: a Real-time Modelling Study

Anton Camacho; Adam J. Kucharski; Yvonne Aki-Sawyerr; Mark A. White; Stefan Flasche; Marc Baguelin; Timothy Pollington; Julia R. Carney; Rebecca Glover; Elizabeth Smout; Amanda Tiffany; W. John Edmunds; Sebastian Funk

Background: Between August and November 2014, the incidence of Ebola virus disease (EVD) rose dramatically in several districts of Sierra Leone. As a result, the number of cases exceeded the capacity of Ebola holding and treatment centres. During December, additional beds were introduced, and incidence declined in many areas. We aimed to measure patterns of transmission in different regions, and evaluate whether bed capacity is now sufficient to meet future demand. Methods: We used a mathematical model of EVD infection to estimate how the extent of transmission in the nine worst affected districts of Sierra Leone changed between 10th August 2014 and 18th January 2015. Using the model, we forecast the number of cases that could occur until the end of March 2015, and compared bed requirements with expected future capacity. Results: We found that the reproduction number, R, defined as the average number of secondary cases generated by a typical infectious individual, declined between August and December in all districts. We estimated that R was near the crucial control threshold value of 1 in December. We further estimated that bed capacity has lagged behind demand between August and December for most districts, but as a consequence of the decline in transmission, control measures caught up with the epidemic in early 2015. Conclusions: EVD incidence has exhibited substantial temporal and geographical variation in Sierra Leone, but our results suggest that the epidemic may have now peaked in Sierra Leone, and that current bed capacity appears to be sufficient to keep the epidemic under-control in most districts.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Measuring the impact of Ebola control measures in Sierra Leone.

Adam J. Kucharski; Anton Camacho; Stefan Flasche; Rebecca Glover; W. John Edmunds; Sebastian Funk

Significance Between June 2014 and February 2015, thousands of Ebola treatment beds were introduced in Sierra Leone, alongside other infection control measures. However, there has been criticism of the timing and focus of this response, and it remains unclear how much it contributed to curbing the 2014–2015 Ebola epidemic. Using a mathematical model, we estimated how many Ebola virus disease cases the response averted in each district of Sierra Leone. We estimated that 56,600 (95% credible interval: 48,300–84,500) Ebola cases were averted in Sierra Leone as a direct result of additional treatment beds. Moreover, the number of cases averted would have been even greater had beds been available 1 month earlier. Between September 2014 and February 2015, the number of Ebola virus disease (EVD) cases reported in Sierra Leone declined in many districts. During this period, a major international response was put in place, with thousands of treatment beds introduced alongside other infection control measures. However, assessing the impact of the response is challenging, as several factors could have influenced the decline in infections, including behavior changes and other community interventions. We developed a mathematical model of EVD transmission, and measured how transmission changed over time in the 12 districts of Sierra Leone with sustained transmission between June 2014 and February 2015. We used the model to estimate how many cases were averted as a result of the introduction of additional treatment beds in each area. Examining epidemic dynamics at the district level, we estimated that 56,600 (95% credible interval: 48,300–84,500) Ebola cases (both reported and unreported) were averted in Sierra Leone up to February 2, 2015 as a direct result of additional treatment beds being introduced. We also found that if beds had been introduced 1 month earlier, a further 12,500 cases could have been averted. Our results suggest the unprecedented local and international response led to a substantial decline in EVD transmission during 2014–2015. In particular, the introduction of beds had a direct impact on reducing EVD cases in Sierra Leone, although the effect varied considerably between districts.


BMJ | 2015

The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola

Anton Camacho; Miles W. Carroll; Natalie E Dean; Moussa Doumbia; W. John Edmunds; Matthias Egger; Godwin Enwere; Yper Hall; Ana Maria Henao-Restrepo; Stefanie Hossmann; Sakoba Keita; Mandy Kader Kondé; Ira M. Longini; Sema Mandal; Gunnstein Norheim; Ximena Riveros; John-Arne Røttingen; Sven Trelle; Andrea S Vicari; Sara Viksmoen Watle; Conall H. Watson

A World Health Organization expert meeting on Ebola vaccines proposed urgent safety and efficacy studies in response to the outbreak in West Africa. One approach to communicable disease control is ring vaccination of individuals at high risk of infection due to their social or geographical connection to a known case. This paper describes the protocol for a novel cluster randomised controlled trial design which uses ring vaccination. In the Ebola ça suffit ring vaccination trial, rings are randomised 1:1 to (a) immediate vaccination of eligible adults with single dose vaccination or (b) vaccination delayed by 21 days. Vaccine efficacy against disease is assessed in participants over equivalent periods from the day of randomisation. Secondary objectives include vaccine effectiveness at the level of the ring, and incidence of serious adverse events. Ring vaccination trials are adaptive, can be run until disease elimination, allow interim analysis, and can go dormant during inter-epidemic periods.


Emerging Infectious Diseases | 2016

Effectiveness of Ring Vaccination as Control Strategy for Ebola Virus Disease.

Adam J. Kucharski; Rosalind M. Eggo; Conall H. Watson; Anton Camacho; Sebastian Funk; William John Edmunds

Using an Ebola virus disease transmission model, we found that addition of ring vaccination at the outset of the West Africa epidemic might not have led to containment of this disease. However, in later stages of the epidemic or in outbreaks with less intense transmission or more effective control, this strategy could help eliminate the disease.


PLOS Neglected Tropical Diseases | 2016

Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus

Sebastian Funk; Adam J. Kucharski; Anton Camacho; Rosalind M. Eggo; Laith Yakob; Lm Murray; W. J. Edmunds

The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0–16 (95% Credible Interval (CI)) for the dengue outbreak and 4.8–14 (95% CI) for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28–102 (95% CI). We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%–1.9%) than that of dengue (95% CI: 47%–61%). We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another.


Emerging Infectious Diseases | 2015

Evaluation of the Benefits and Risks of Introducing Ebola Community Care Centers, Sierra Leone

Adam J. Kucharski; Anton Camacho; Francesco Checchi; Ronald J. Waldman; Rebecca F. Grais; Jean-Clement Cabrol; Sylvie Briand; Marc Baguelin; Stefan Flasche; Sebastian Funk; W. John Edmunds

These centers could lead to a decline in cases, even if virus containment is imperfect.


Epidemics | 2014

OutbreakTools: A new platform for disease outbreak analysis using the R software

Thibaut Jombart; David M. Aanensen; Marc Baguelin; Paul J. Birrell; Simon Cauchemez; Anton Camacho; Caroline Colijn; Caitlin Collins; Anne Cori; Xavier Didelot; Christophe Fraser; Simon D. W. Frost; Niel Hens; Joseph Hugues; Michael Höhle; Lulla Opatowski; Andrew Rambaut; Oliver Ratmann; Samuel Soubeyrand; Marc A. Suchard; Jacco Wallinga; Rolf J. F. Ypma; Neil M. Ferguson

The investigation of infectious disease outbreaks relies on the analysis of increasingly complex and diverse data, which offer new prospects for gaining insights into disease transmission processes and informing public health policies. However, the potential of such data can only be harnessed using a number of different, complementary approaches and tools, and a unified platform for the analysis of disease outbreaks is still lacking. In this paper, we present the new R package OutbreakTools, which aims to provide a basis for outbreak data management and analysis in R. OutbreakTools is developed by a community of epidemiologists, statisticians, modellers and bioinformaticians, and implements classes and methods for storing, handling and visualizing outbreak data. It includes real and simulated outbreak datasets. Together with a number of tools for infectious disease epidemiology recently made available in R, OutbreakTools contributes to the emergence of a new, free and open-source platform for the analysis of disease outbreaks.

Collaboration


Dive into the Anton Camacho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco J. Luquero

European Centre for Disease Prevention and Control

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge