Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conall H. Watson is active.

Publication


Featured researches published by Conall H. Watson.


The Lancet | 2015

Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial

Ana Maria Henao-Restrepo; Ira M. Longini; Matthias Egger; Natalie E Dean; W. John Edmunds; Anton Camacho; Miles W. Carroll; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Stefanie Hossmann; Mandy Kader Kondé; Souleymane Kone; Eeva Kuisma; Myron M. Levine; Sema Mandal; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari; Conall H. Watson; Sakoba Keita; Marie Paule Kieny; John-Arne Røttingen

BACKGROUND A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.


The Lancet | 2017

Efficacy and Effectiveness of an rVSV-Vectored Vaccine in Preventing Ebola Virus Disease: Final Results from the Guinea Ring Vaccination, Open-Label, Cluster-Randomised Trial (Ebola Ça Suffit!)

Ana Maria Henao-Restrepo; Anton Camacho; Ira M. Longini; Conall H. Watson; W. John Edmunds; Matthias Egger; Miles W. Carroll; Natalie E Dean; Ibrahima Dina Diatta; Moussa Doumbia; B. Draguez; Sophie Duraffour; Godwin Enwere; Rebecca F. Grais; Stephan Günther; Pierre-Stéphane Gsell; Stefanie Hossmann; Sara Viksmoen Watle; Mandy Kader Kondé; Sakoba Keita; Souleymane Kone; Eewa Kuisma; Myron M. Levine; Sema Mandal; Thomas Mauget; Gunnstein Norheim; Ximena Riveros; Aboubacar Soumah; Sven Trelle; Andrea S Vicari

Summary Background rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. Methods We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×107 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6–17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate vaccination versus eligible contacts and contacts of contacts assigned to delayed vaccination. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. Findings In the randomised part of the trial we identified 4539 contacts and contacts of contacts in 51 clusters randomly assigned to immediate vaccination (of whom 3232 were eligible, 2151 consented, and 2119 were immediately vaccinated) and 4557 contacts and contacts of contacts in 47 clusters randomly assigned to delayed vaccination (of whom 3096 were eligible, 2539 consented, and 2041 were vaccinated 21 days after randomisation). No cases of Ebola virus disease occurred 10 days or more after randomisation among randomly assigned contacts and contacts of contacts vaccinated in immediate clusters versus 16 cases (7 clusters affected) among all eligible individuals in delayed clusters. Vaccine efficacy was 100% (95% CI 68·9–100·0, p=0·0045), and the calculated intraclass correlation coefficient was 0·035. Additionally, we defined 19 non-randomised clusters in which we enumerated 2745 contacts and contacts of contacts, 2006 of whom were eligible and 1677 were immediately vaccinated, including 194 children. The evidence from all 117 clusters showed that no cases of Ebola virus disease occurred 10 days or more after randomisation among all immediately vaccinated contacts and contacts of contacts versus 23 cases (11 clusters affected) among all eligible contacts and contacts of contacts in delayed plus all eligible contacts and contacts of contacts never vaccinated in immediate clusters. The estimated vaccine efficacy here was 100% (95% CI 79·3–100·0, p=0·0033). 52% of contacts and contacts of contacts assigned to immediate vaccination and in non-randomised clusters received the vaccine immediately; vaccination protected both vaccinated and unvaccinated people in those clusters. 5837 individuals in total received the vaccine (5643 adults and 194 children), and all vaccinees were followed up for 84 days. 3149 (53·9%) of 5837 individuals reported at least one adverse event in the 14 days after vaccination; these were typically mild (87·5% of all 7211 adverse events). Headache (1832 [25·4%]), fatigue (1361 [18·9%]), and muscle pain (942 [13·1%]) were the most commonly reported adverse events in this period across all age groups. 80 serious adverse events were identified, of which two were judged to be related to vaccination (one febrile reaction and one anaphylaxis) and one possibly related (influenza-like illness); all three recovered without sequelae. Interpretation The results add weight to the interim assessment that rVSV-ZEBOV offers substantial protection against Ebola virus disease, with no cases among vaccinated individuals from day 10 after vaccination in both randomised and non-randomised clusters. Funding WHO, UK Wellcome Trust, the UK Government through the Department of International Development, Médecins Sans Frontières, Norwegian Ministry of Foreign Affairs (through the Research Council of Norways GLOBVAC programme), and the Canadian Government (through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre and Department of Foreign Affairs, Trade and Development).


Nature Genetics | 2015

Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events

Vanessa K. Wong; Stephen Baker; Derek Pickard; Julian Parkhill; Andrew J. Page; Nicholas A. Feasey; Robert A. Kingsley; Nicholas R. Thomson; Jacqueline A. Keane; F X Weill; David J. Edwards; Jane Hawkey; Simon R. Harris; Alison E. Mather; Amy K. Cain; James Hadfield; Peter J. Hart; Nga Tran Vu Thieu; Elizabeth J. Klemm; Dafni A. Glinos; Robert F. Breiman; Conall H. Watson; Samuel Kariuki; Melita A. Gordon; Robert S. Heyderman; Chinyere K. Okoro; Jan Jacobs; Octavie Lunguya; W. John Edmunds; Chisomo L. Msefula

The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.


BMJ | 2015

The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola

Anton Camacho; Miles W. Carroll; Natalie E Dean; Moussa Doumbia; W. John Edmunds; Matthias Egger; Godwin Enwere; Yper Hall; Ana Maria Henao-Restrepo; Stefanie Hossmann; Sakoba Keita; Mandy Kader Kondé; Ira M. Longini; Sema Mandal; Gunnstein Norheim; Ximena Riveros; John-Arne Røttingen; Sven Trelle; Andrea S Vicari; Sara Viksmoen Watle; Conall H. Watson

A World Health Organization expert meeting on Ebola vaccines proposed urgent safety and efficacy studies in response to the outbreak in West Africa. One approach to communicable disease control is ring vaccination of individuals at high risk of infection due to their social or geographical connection to a known case. This paper describes the protocol for a novel cluster randomised controlled trial design which uses ring vaccination. In the Ebola ça suffit ring vaccination trial, rings are randomised 1:1 to (a) immediate vaccination of eligible adults with single dose vaccination or (b) vaccination delayed by 21 days. Vaccine efficacy against disease is assessed in participants over equivalent periods from the day of randomisation. Secondary objectives include vaccine effectiveness at the level of the ring, and incidence of serious adverse events. Ring vaccination trials are adaptive, can be run until disease elimination, allow interim analysis, and can go dormant during inter-epidemic periods.


PLOS Neglected Tropical Diseases | 2016

Human Leptospirosis Infection in Fiji: An Eco-epidemiological Approach to Identifying Risk Factors and Environmental Drivers for Transmission

Colleen L. Lau; Conall H. Watson; John H. Lowry; Michael David; Scott B. Craig; Sarah Jane Wynwood; Mike Kama; Eric J. Nilles

Leptospirosis is an important zoonotic disease in the Pacific Islands. In Fiji, two successive cyclones and severe flooding in 2012 resulted in outbreaks with 576 reported cases and 7% case-fatality. We conducted a cross-sectional seroprevalence study and used an eco-epidemiological approach to characterize risk factors and drivers for human leptospirosis infection in Fiji, and aimed to provide an evidence base for improving the effectiveness of public health mitigation and intervention strategies. Antibodies indicative of previous or recent infection were found in 19.4% of 2152 participants (81 communities on the 3 main islands). Questionnaires and geographic information systems data were used to assess variables related to demographics, individual behaviour, contact with animals, socioeconomics, living conditions, land use, and the natural environment. On multivariable logistic regression analysis, variables associated with the presence of Leptospira antibodies included male gender (OR 1.55), iTaukei ethnicity (OR 3.51), living in villages (OR 1.64), lack of treated water at home (OR 1.52), working outdoors (1.64), living in rural areas (OR 1.43), high poverty rate (OR 1.74), living <100m from a major river (OR 1.41), pigs in the community (OR 1.54), high cattle density in the district (OR 1.04 per head/sqkm), and high maximum rainfall in the wettest month (OR 1.003 per mm). Risk factors and drivers for human leptospirosis infection in Fiji are complex and multifactorial, with environmental factors playing crucial roles. With global climate change, severe weather events and flooding are expected to intensify in the South Pacific. Population growth could also lead to more intensive livestock farming; and urbanization in developing countries is often associated with urban and peri-urban slums where diseases of poverty proliferate. Climate change, flooding, population growth, urbanization, poverty and agricultural intensification are important drivers of zoonotic disease transmission; these factors may independently, or potentially synergistically, lead to enhanced leptospirosis transmission in Fiji and other similar settings.


Emerging Infectious Diseases | 2016

Effectiveness of Ring Vaccination as Control Strategy for Ebola Virus Disease.

Adam J. Kucharski; Rosalind M. Eggo; Conall H. Watson; Anton Camacho; Sebastian Funk; William John Edmunds

Using an Ebola virus disease transmission model, we found that addition of ring vaccination at the outset of the West Africa epidemic might not have led to containment of this disease. However, in later stages of the epidemic or in outbreaks with less intense transmission or more effective control, this strategy could help eliminate the disease.


The Lancet Global Health | 2017

Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study

Daouda Sissoko; Sophie Duraffour; Romy Kerber; Jacques Seraphin Kolié; Abdoul Habib Beavogui; Alseny Modet Camara; Géraldine Colin; Toni Rieger; Lisa Oestereich; Bernadett Pályi; Stephanie Wurr; Jeremie Guedj; Thi Huyen Tram Nguyen; Rosalind M. Eggo; Conall H. Watson; W. John Edmunds; Joseph Akoi Bore; Fara Raymond Koundouno; Mar Cabeza-Cabrerizo; Lisa L. Carter; Liana Eleni Kafetzopoulou; Eeva Kuisma; Janine Michel; Livia Victoria Patrono; Natasha Y. Rickett; Katrin Singethan; Martin Rudolf; Angelika Lander; Elisa Pallasch; Sabrina Bockholt

BACKGROUND By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. METHODS In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. INTERPRETATION Time to clearance of Ebola virus RNA from seminal fluid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks. FUNDING This study was funded by European Unions Horizon 2020 research and innovation programme, Directorate-General for International Cooperation and Development of the European Commission, Institut national de la santé et de la recherche médicale (INSERM), German Research Foundation (DFG), and Innovative Medicines Initiative 2 Joint Undertaking.


Nature Communications | 2016

An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid

Vanessa K. Wong; Stephen Baker; Thomas Richard Connor; Derek Pickard; Andrew J. Page; Jayshree Dave; Niamh Murphy; Richard Holliman; Armine Sefton; Michael Millar; Zoe A. Dyson; Gordon Dougan; Kathryn E. Holt; Julian Parkhill; Nicholas A. Feasey; Robert A. Kingsley; Nicholas R. Thomson; Jacqueline A. Keane; F X Weill; Simon Le Hello; Jane Hawkey; David J. Edwards; Simon R. Harris; Amy K. Cain; James Hadfield; Peter J. Hart; Nga Tran Vu Thieu; Elizabeth J. Klemm; Robert F. Breiman; Conall H. Watson

The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations.


Vaccine | 2015

A review of typhoid fever transmission dynamic models and economic evaluations of vaccination.

Conall H. Watson; W. John Edmunds

Highlights • There are relatively few dynamic models or economic analyses of typhoid vaccination.• The relative contribution of carriage to transmission is a key uncertainty.• Published economic analyses use static models that omit indirect protection of vaccines.• Nevertheless, vaccines appear highly cost-effective against WHO criteria in high-incidence settings.• No economic model was found to compare vaccine and sanitation.


Eurosurveillance | 2015

Duration of Ebola virus RNA persistence in semen of survivors: population-level estimates and projections.

Rosalind M. Eggo; Conall H. Watson; Anton Camacho; Adam J. Kucharski; Sebastian Funk; W. J. Edmunds

Ebola virus can persist in semen after recovery, potentially for months, which may impact the duration of enhanced surveillance required after interruption of transmission. We combined recent data on viral RNA persistence with weekly disease incidence to estimate the current number of semen-positive men in affected West African countries. We find the number is low, and since few reported sexual transmission events have occurred, the future risk is also likely low, although sexual health promotion remains critical.

Collaboration


Dive into the Conall H. Watson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colleen L. Lau

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge