Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anton Lechner is active.

Publication


Featured researches published by Anton Lechner.


Physical Review Special Topics-accelerators and Beams | 2015

Testing beam-induced quench levels of LHC superconducting magnets

Bernhard Auchmann; J. Wenninger; Mariusz Sapinski; Eleftherios Skordis; B. Dehning; G. Bellodi; Vera Chetvertkova; Chiara Bracco; Markus Zerlauth; Stefano Redaelli; Anton Lechner; Roderik Bruce; Agnieszka Priebe; Mateusz Jakub Bednarek; R. Schmidt; P.P. Granieri; M. Solfaroli; Arjan Verweij; E. Nebot Del Busto; T Baer; Nikhil Vittal Shetty; Daniel Valuch; D Wollmann; Belen Salvachua; Jens Steckert; Eva Barbara Holzer; Wolfgang Höfle; F. Cerutti

In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electro-thermal models, thus allowing to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for Run 2.


Archive | 2012

UFOs in the LHC after LS1

T Baer; Anton Lechner; N. Garrel; Andrea Ferrari; Kain; L Norderhaug Drosdal; Vlachoudis; J. Wenninger; B Velghe; Christos Zamantzas; R Morón Ballester; A Nordt; J M Jimenez; J. Uythoven; E Nebot Del Busto; A Gérardin; F. Cerutti; B. Goddard; M. Misiowiec; L Ducimetière; F. Zimmermann; M.J. Barnes; N Fuster Martinez; Stephen Jackson; B. Dehning; Eva Barbara Holzer; Etienne Carlier; Mertens

UFOs (“Unidentified Falling Objects”) are potentially a major luminosity limitation for nominal LHC operation. With large-scale increases of the BLM thresholds, their impact on LHC availability was mitigated in the second half of 2011. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. In this paper, the state of knowledge is summarized and extrapolations for LHC operation after LS1 are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.


Journal of Instrumentation | 2016

High Luminosity LHC: Challenges and plans

Gianluigi Arduini; J. Barranco; A. Bertarelli; Nicolo Biancacci; Roderik Bruce; O. Brüning; Xavier Buffat; Y. Cai; Lee Robert Carver; S. Fartoukh; M. Giovannozzi; Giovanni Iadarola; Kevin Li; Anton Lechner; L. Medina Medrano; Elias Métral; Y. Nosochkov; Yannis Papaphilippou; Dario Pellegrini; J. Qiang; Stefano Redaelli; A. Romano; L. Rossi; G. Rumolo; Benoit Salvant; M. Schenk; Claudia Tambasco; Rogelio Tomás; S. Valishev; F.F. Van der Veken

The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.


Jetp Letters | 2015

Comparative results on the deflection of positively and negatively charged particles by multiple volume reflections in a multi-strip silicon deflector

W. Scandale; Gianluigi Arduini; Mark Butcher; F. Cerutti; M. Garattini; S. Gilardoni; Anton Lechner; R. Losito; A. Masi; A. Mereghetti; E. Metral; Daniele Mirarchi; S. Montesano; Stefano Redaelli; Roberto Rossi; P. Schoofs; G. Smirnov; E. Bagli; L. Bandiera; S. Baricordi; P. Dalpiaz; G. Germogli; V. Guidi; A. Mazzolari; D. Vincenzi; G. Claps; S. Dabagov; D. Hampai; F. Murtas; G. Cavoto

Bent silicon crystals in channeling mode are already used for beam extraction and collimation in particle accelerators. Volume reflection of beam particles is more efficient than beam channeling; however, the mean deflection angle is rather small. An experiment on the deflection of a 400 GeV/c proton beam and a 150 GeV/c π− beam at CERN using a multi-strip silicon deflector in reflection mode is described. The mean deflection angle of beam particles has been considerably increased due to sequential volume reflections realized in the deflector. This gives possibility for a successful usage of the multi-strip deflectors for beam collimation in high-energy accelerators.


Archive | 2018

Beam Loss Measurements for Recurring Fast Loss Events During 2017 LHC Operation Possibly Caused by Macroparticles

Anton Lechner; Bernhard Auchmann; Laura Katharina Grob; R. Schmidt; Tatiana Medvedeva; E. Bravin; Daniele Mirarchi; Daniel Wollmann; Eva Barbara Holzer; Arkadiusz Gorzawski; Matthieu Valette; Bjorn Hans Filip Lindstrom

The availability of the LHC machine was adversely affected in 2017 by tens of beam aborts provoked by frequent loss events in one standard arc cell (16L2). In most of the cases, the dumps were triggered by concurrently developing fast beam instabilities leading to particle losses in the betatron cleaning insertion. Many of the events started with a distinct sub-millisecond loss peak comparable to regular dust particle events, which have been observed along all the LHC since the start-up. In contrast to regular dust events, persistent losses developed in cell 16L2 after the initial peaks which can possibly be explained by a phase transition of macroparticles to the gas phase. In this paper, we summarize the observed loss characteristics such as spatial loss pattern and time profiles measured by Beam Loss Monitors (ionization chambers). Based on the measurements, we estimate the energy deposition in macroparticles and reconstruct proton loss rates as well as the gas densities after the phase transition. Differences between regular dust events and events in 16L2 are highlighted and the ability to induce magnet quenches is discussed.


Journal of Physics: Conference Series | 2018

Injection and Dump Systems for a 13.5 TeV Hadron Synchrotron HE-LHC

Wolfgang Bartmann; M.J. Barnes; L. Ducimetière; B. Goddard; M. Hofer; T. Kramer; Anton Lechner; E. Renner; A. Sanz Ull; V. Senaj; L.S. Stoel; C. Wiesner

One option for a future circular collider at CERN is to build a 13.5 TeV hadron synchrotron, or High Energy LHC (HE-LHC) in the LHC tunnel. Injection and dump systems will have to be upgraded to cope with the higher beam rigidity and increased damage potential of the beam. The required modifications of the beam transfer hardware are highlighted in view of technology advancements in the field of kicker switch technology. An optimised straight section optics is shown.


IEEE Transactions on Nuclear Science | 2018

LHC and HL-LHC: Present and Future Radiation Environment in the High-Luminosity Collision Points and RHA Implications

Ruben Garcia Alia; Markus Brugger; F. Cerutti; Salvatore Danzeca; A. Ferrari; S. Gilardoni; Y. Kadi; Maria Kastriotou; Anton Lechner; Corinna Martinella; Oliver Stein; Yves Thurel; Andrea Tsinganis; Slawosz Uznanski

The high-luminosity large hadron collider (HL-LHC) is a novel machine configuration which will rely on a number of key innovative technologies to enhance the performance of the present LHC machine as of 2025. The upgrade will also involve increased radiation levels that need to be predicted by combining scaled measurements and calculations in order to define the qualification requirements for electronic systems. In this paper, we describe such levels, first of all, by introducing the monitoring and calculation approaches used for the present LHC machine, and second, by applying scaling factors and dedicated simulations for the future HL-LHC accelerators. We present the levels according to the different areas relevant for the operation of electronics-based equipment, and discuss the associated radiation hardness assurance implications.


Proceedings of 38th International Conference on High Energy Physics — PoS(ICHEP2016) | 2017

Observation of channeling in bent crystals at the CERN LHC

Roberto Rossi; F. Galluccio; Yury Chesnokov; G. Smirnov; Daniele Mirarchi; A.M. Taratin; F. Murtas; Roberto Losito; Gianluigi Arduini; Yury E Sandomirskiy; M. Raymond; Roberta Santacesaria; Alessandro Masi; Francesca Addesa; S.B. Dabagov; Iouri M Ivanov; Germogli Germogli; Stefano Redaelli; E. Bagli; Yury A Gavrikov; L. Bandiera; Gianluca Valentino; A. Stocchi; Mark Butcher; Leonid Burmistrov; Marco Garattini; Paolo Valente; A. D. Kovalenko; W. Scandale; A A Yanovic

The feasibility of crystal-assisted collimation is being investigated for improvements of the LHC collimation system, as a part of the future high luminosity upgrade of the CERN LHC (HL-LHC). Two high-accuracy goniometers, each equipped with one bent silicon crystal, were installed in the betatron cleaning insertion of the LHC in 2014. During dedicated tests in 2015, bent crystals were approached to the circulating the beams to test their usage as a first stage in a crystal-based system, both with proton and Pb ion beams. Tests were performed with protons at injection energy (450 GeV/c) and at flat top (6.5 TeV/c), and with ions at injection energy (450 Z GeV/c). A reduction of losses immediately downstream of the crystals was observed in optimum channeling orientation, demonstrating for the first time channeling at these energies. Halo cleaning efficiency of the crystal-based collimation system was also measured.


Archive | 2017

Study of the 2015 Top Energy LHC Collimation Quench Tests Through an Advanced Simulation Chain

Eleftherios Skordis; Francesco Cerutti; Vasilis Vlachoudis; Roderik Bruce; Stefano Redaelli; Alessio Mereghetti; Pascal Dominik Hermes; Alfredo Ferrari; Belen Salvachua; Carsten Welsch; Anton Lechner

While the LHC has shown record-breaking performance during the 2016 run, our understanding of the behaviour of the machine must also reach new levels. The collimation system and especially the betatron cleaning insertion region (IR7), where most of the beam halo is intercepted to protect superconducting (SC) magnets from quenching, has so far met the expectations but could nonetheless pose a bottleneck for future operation at higher beam intensities for HL-LHC. A better understanding of the collimation leakage to SC magnets is required in order to quantify potential limitations in terms of cleaning efficiency, ultimately optimising the collider capabilities. Particle tracking simulations combined with shower simulations represent a powerful tool for quantifying the power deposition in magnets next to the cleaning insertion. In this study, we benchmark the simulation models against beam loss monitor measurements from magnet quench tests (QT) with 6.5 TeV proton and 6.37Z TeV Pb ion beams. In addition, we investigate the effect of possible imperfections on the collimation leakage and the power deposition in magnets.


Archive | 2017

JACoW : Impact on the HL-LHC Triplet Region and Experiments From Asynchronous Beam Dumps on Tertiary Collimators

Andrea Tsinganis; Anton Lechner; Francesco Cerutti; Roderik Bruce

In the CERN LHC, accidental beam impacts on the tertiary collimators (TCTs) can lead to signiicant energy deposition in the triplet region and to leakage of the induced particle shower towards the experimental cavern. In this work, carried out in the context of the planned High Luminosity Upgrade of the LHC, severe impacts from asynchronous beam dumps on the horizontal tertiary collimator in cell 4 of the CMS insertion were studied, with half or a full proton bunch impacting on a collimator jaw. The choice of jaw material is shown to be of great importance, with over a factor of 10 increase in peak energy density values in the triplet coils moving from tungsten (Inermet) to molybdenum graphite jaws. Nevertheless, although the quench limit is exceeded in at least one or more triplet magnets in all the evaluated scenarios, values remain well below the damage limit. Yields and energy spectra of particles leaking into the experimental cavern have also been estimated and are presented here.

Researchain Logo
Decentralizing Knowledge