Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiara Bracco is active.

Publication


Featured researches published by Chiara Bracco.


Physical Review Special Topics-accelerators and Beams | 2014

Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

Roderik Bruce; G. Robert-Demolaize; R. Assmann; V. Boccone; Chiara Bracco; M. Brugger; Marija Cauchi; F. Cerutti; D Deboy; A. Ferrari; L Lari; Aurelien Marsili; Alessio Mereghetti; Daniele Mirarchi; Elena Quaranta; Stefano Redaelli; A Rossi; Belen Salvachua; Eleftherios Skordis; Claudia Tambasco; Gianluca Valentino; T Weiler; V. Vlachoudis; D Wollmann

The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte-Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.


Physical Review Special Topics-accelerators and Beams | 2009

Measurements of heavy ion beam losses from collimation

Roderik Bruce; R. Assmann; G. Bellodi; Chiara Bracco; H. Braun; S. Gilardoni; Eva Barbara Holzer; John M. Jowett; Stefano Redaelli; T Weiler

The collimation efficiency for Pb-208(82+) ion beams in the LHC is predicted to be lower than requirements Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not intercepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements and simulations of loss patterns generated by a prototype LHC collimator in the CERN SPS. Measurements were performed at two different energies and angles of the collimator. We also compare with proton loss maps and find a qualitative difference between Pb-208(82+) ions and protons, with the maximum loss rate observed at different places in the ring. This behavior was predicted by simulations and provides a valuable benchmark of our understanding of ion beam losses caused by collimation. (Less)


Physical Review Special Topics-accelerators and Beams | 2015

Testing beam-induced quench levels of LHC superconducting magnets

Bernhard Auchmann; J. Wenninger; Mariusz Sapinski; Eleftherios Skordis; B. Dehning; G. Bellodi; Vera Chetvertkova; Chiara Bracco; Markus Zerlauth; Stefano Redaelli; Anton Lechner; Roderik Bruce; Agnieszka Priebe; Mateusz Jakub Bednarek; R. Schmidt; P.P. Granieri; M. Solfaroli; Arjan Verweij; E. Nebot Del Busto; T Baer; Nikhil Vittal Shetty; Daniel Valuch; D Wollmann; Belen Salvachua; Jens Steckert; Eva Barbara Holzer; Wolfgang Höfle; F. Cerutti

In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electro-thermal models, thus allowing to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for Run 2.


Nature | 2018

Acceleration of electrons in the plasma wakefield of a proton bunch

E. Adli; A. Ahuja; O. Apsimon; Robert Apsimon; A.-M. Bachmann; D. Barrientos; F. Batsch; J. Bauche; V. K. Berglyd Olsen; M. Bernardini; T. Bohl; Chiara Bracco; F. Braunmüller; Graeme Burt; B. Buttenschön; A. Caldwell; M. Cascella; J. Chappell; Eric Chevallay; M. Chung; D. Cooke; H. Damerau; L. Deacon; L.H. Deubner; Amos Dexter; S. Doebert; J. Farmer; V. N. Fedosseev; R. Fiorito; Ricardo Fonseca

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration1–5, in which the electrons in a plasma are excited, leading to strong electric fields (so called ‘wakefields’), is one such promising acceleration technique. Experiments have shown that an intense laser pulse6–9 or electron bunch10,11 traversing a plasma can drive electric fields of tens of gigavolts per metre and above—well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies5,12. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage13. Long, thin proton bunches can be used because they undergo a process called self-modulation14–16, a particle–plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17–19 uses high-intensity proton bunches—in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage20 means that our results are an important step towards the development of future high-energy particle accelerators21,22.Electron acceleration to very high energies is achieved in a single step by injecting electrons into a ‘wake’ of charge created in a 10-metre-long plasma by speeding long proton bunches.


Archive | 2012

Injection and lessons for 2012

Chiara Bracco; M. Meddahi; K Cornelis; M.J. Barnes; J. Uythoven; L N Drosdal; W. Bartmann; B. Goddard; Mertens; Kain

Injection of 144 bunches into the LHC became fully operational during the 2011 run and one nominal injection of 288 bunches was accomplished. Several mitigation solutions were put in place to minimise losses from the Transfer Line (TL) collimators and losses from kicking debunched beam during injection. Nevertheless, shotby-shot and bunch-by-bunch trajectory variations, as well as long terms drifts, were observed and required a regular resteering of the TL implying a non negligible amount of time spent for injection setup. Likely sources of instability have been identified (i.e. MKE and MSE ripples) and possible cures to optimise 2012 operation are presented. Well defined references for TL steering will be defined in a more rigorous way in order to allow a more straightforward and faster injection setup. Encountered and potential issues of the injection system, in particular the injection kickers MKI, are discussed also in view of injections with a higher number of bunches.


Archive | 2012

Can the proton injectors meet the HL-LHC requirements after LS2?

B. Goddard; Chiara Bracco; Heiko Damerau; G. Rumolo; Karel Cornelis; M. Meddahi; Y. Papaphilippou; Hannes Bartosik; M. Vretenar; K. Hanke; Kain; E. Shaposhnikova; O. Brüning; C. Carli; R. Steerenberg; S. Gilardoni; S. Hancock; R. Garoby; B Mikulec

The LIU project has as mandate the upgrade of the LHC injector chain to match the requirements of HLLHC. The present planning assumes that the upgrade work will be completed in LS2, for commissioning in the following operational year. The known limitations in the different injectors are described, together with the various upgrades planned to improve the performance. The expected performance reach after the upgrade with 25 and 50 ns beams is examined. The project planning is discussed in view of the present LS1 and LS2 planning. The main unresolved questions and associated decision points are presented, and the key issues to be addressed by the end of 2012 are detailed in the context of the machine development programs and hardware construction activities. HL-LHC REQUIREMENTS AFTER LS2 The stated performance objective of HL-LHC is to accumulate 3000 fb of integrated p-p luminosity at 14 TeV centre of mass collision energy [1]. In order to achieve this, an annual figure of 250-300 fb has been posited, requiring instantaneous luminosity capability of around 7–8×10 cms, levelling to 5×10 cms and high machine efficiency [2]. The present paper covers the first of these challenging requirements: how to deliver the beam from the injector complex for these luminosities almost an order of magnitude above LHC design. The HL-LHC project has previously outlined possible parameter sets for 25 and 50 ns spacing which give the required luminosity, summarised in Tab. 1, adapted from [2]. Strictly speaking the HL-LHC needs the specified beams from the SPS after LS3, when the major work for the HL-LHC project is planned. The LIU work will take place largely in LS2, so that the period LS2 to LS3 will be an important one in terms of achieving the maximum performance from the injector chain. The figures quoted are for beams at the start of the collision process at 7 TeV – any beam loss or emittance dilution after extraction from the SPS is not included. The assumptions on the beam loss and emittance dilution for all machines are given in Tab. 2, where it can be seen that the total assumed beamloss -ΔI/I0 is 27%, and the emittance growth Δε/ε0 is 33%, corresponding to a brightness which is reduced to 55% of the original value. Table 1: Parameters and requirements from HL-LHC Parameter Nom. HL 25 ns HL 50 ns N [e11 p+] 1.15 2.0 3.3


Journal of Physics: Conference Series | 2018

Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line

Ishkhan Gorgisyan; Stefano Mazzoni; Stephane Burger; L. Jensen; Steen Jensen; David Medina; Manfred Wendt; Lars Søby; E. Gschwendtner; Spencer Gessner; S. Doebert; Kevin Pepitone; Chiara Bracco; Francesco Velotti; F. Keeble; M. Wing; S. Jolly; Michele Cascella; V. Verzilov

The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) is a project at CERN aiming to accelerate an electron bunch in a plasma wakefield driven by a proton bunch. The plasma is induced in a 10 m long rubidium vapor cell using a pulsed Ti:Sapphire laser, with the wakefield formed by a proton bunch from the CERN Super Proton Synchrotron (SPS). A 16 MeV electron bunch is simultaneously injected into the plasma cell to be accelerated by the wakefield to energies in the GeV range over this short distance. After successful runs with the proton and laser beams, the electron beam line was installed and commissioned at the end of 2017 to produce and inject a suitable electron bunch into the plasma cell. To achieve the goals of the experiment, it is important to have reliable beam instrumentation measuring the various parameters of the proton, electron and laser beams. This contribution presents the status of the beam instrumentation in AWAKE and reports on the performance achieved during the AWAKE runs in 2017.


AIP Conference Proceedings | 2018

First experience with carbon stripping foils for the 160 MeV H− injection into the CERN PSB

Wim Weterings; Pieter Van Trappen; Louise Olivia Jorat; Chiara Bracco; Remy Noulibos

160 MeV H− beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H− charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H− into protons by stripping off the electrons. The H− charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H− commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.


7th International Particle Accelerator Conference (IPAC'16), Busan, Korea, May 8-13, 2016 | 2016

Analysis of the SPS Long Term Orbit Drifts

Francesco Velotti; Chiara Bracco; Karel Cornelis; Lene Drøsdal; Matthew Fraser; Eliana Gianfelice-Wendt; B. Goddard; V. Kain; Malika Meddahi

The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.


arXiv: Accelerator Physics | 2010

Injection and dump considerations for a 16.5 TeV HE-LHC

B. Goddard; J. Borburgh; V. Senaj; M. Meddahi; Laurent Ducimetière; M.J. Barnes; W. Bartmann; J. Uythoven; V. Kain; V. Mertens; Chiara Bracco

Injection and beam dumping is considered for a 16.5 TeV hadron accelerator in the current LHC tunnel, with an injection energy in the range 1 - 1.3 TeV. The present systems are described and the possible upgrade scenarios investigated for higher beam rigidity. In addition to the required equipment performance, the machine protection related aspects are explored. The expected constraints on the machine layout are also given. The technological challenges for the different equipment subsystems are detailed, and areas where R&D is necessary are highlighted.

Researchain Logo
Decentralizing Knowledge