Anton Reiner
University of Tennessee Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anton Reiner.
The Journal of Comparative Neurology | 2004
Anton Reiner; David J. Perkel; Laura L. Bruce; Ann B. Butler; András Csillag; Wayne J. Kuenzel; Loreta Medina; George Paxinos; T. Shimizu; Georg F. Striedter; Martin Wild; Gregory F. Ball; Sarah E. Durand; Onur Gütürkün; Diane W. Lee; Claudio V. Mello; Alice Schade Powers; Stephanie A. White; Gerald E. Hough; Lubica Kubikova; Tom V. Smulders; Kazuhiro Wada; Jennifer Dugas-Ford; Scott Husband; Keiko Yamamoto; Jing Yu; Connie Siang; Erich D. Jarvis
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names.
Journal of Neuroscience Methods | 1992
C.Leonardus Veenman; Anton Reiner; Marcia G. Honig
Fluorescent dextran amines have recently been reported to be useful for anterograde pathway tracing. However, fluorescent markers are not always ideal for detailed mapping studies. We therefore evaluated the efficacy of a biotinylated dextran amine (BDA) for anterograde labeling in several different preparations. BDA was visualized with an avidin-biotinylated HRP (ABC) procedure followed by a standard or metal-enhanced diaminobenzidine (DAB) reaction. After iontophoretic injections of BDA into neocortex-like telencephalic regions in pigeons or into visual or somatosensory cortex in rats, there was excellent and abundant labeling of axons and terminals in forebrain, midbrain and hindbrain target areas with 1-week survival times. Large pressure injections of BDA into the avian telencephalon were also found to result in extensive anterograde labeling. We then carried out a series of studies using 2-color DAB double-labeling to determine effective approaches for combining BDA labeling with other labeling methods. Using an isolated embryonic chick spinal cord-hindlimb preparation, we combined BDA labeling with another anterograde labeling method to differentially label two sets of projections. In these studies, sensory neuron and motoneuron projections into the limb from the same segmental level, or motoneuron projections into the limb from two separate segments were differentially labeled by using HRP (visualized first with a blue/black metal-DAB reaction) and BDA (visualized second with a brown DAB reaction). In other double-labeling studies, we combined BDA labeling of axons and terminals with immunohistochemical labeling of neurons. In these experiments, telencephalic neurons in pigeons or rats were labeled immunohistochemically for parvalbumin or substance P (using a brown DAB reaction) and BDA-labeled axons were labeled blue/black (using a metal-intensified DAB reaction). Double-labeling was successful regardless of whether the entire immunohistochemical labeling procedure preceded or followed the BDA labeling procedure. Together, these studies show that BDA is effective for anterograde pathway tracing and can be used in double-label studies with other labeling methods.
Brain Research Reviews | 1998
Anton Reiner; Loreta Medina; C. Leo Veenman
While a basal ganglia with striatal and pallidal subdivisions is 1 clearly present in many extant anamniote species, this basal ganglia is cell sparse and receives only a relatively modest tegmental dopaminergic input and little if any cortical input. The major basal ganglia influence on motor functions in anamniotes appears to be exerted via output circuits to the tectum. In contrast, in modern mammals, birds, and reptiles (i.e., modern amniotes), the striatal and pallidal parts of the basal ganglia are very neuron-rich, both consist of the same basic populations of neurons in all amniotes, and the striatum receives abundant tegmental dopaminergic and cortical input. The functional circuitry of the basal ganglia also seems very similar in all amniotes, since the major basal ganglia influences on motor functions appear to be exerted via output circuits to both cerebral cortex and tectum in sauropsids (i.e., birds and reptiles) and mammals. The basal ganglia, output circuits to the cortex, however, appear to be considerably more developed in mammals than in birds and reptiles. The basal ganglia, thus, appears to have undergone a major elaboration during the evolutionary transition from amphibians to reptiles. This elaboration may have enabled amniotes to learn and/or execute a more sophisticated repertoire of behaviors and movements, and this ability may have been an important element of the successful adaptation of amniotes to a fully terrestrial habitat. The mammalian lineage appears, however, to have diverged somewhat from the sauropsid lineage with respect to the emergence of the cerebral cortex as the major target of the basal ganglia circuitry devoted to executing the basal ganglia-mediated control of movement.
Trends in Neurosciences | 2000
Loreta Medina; Anton Reiner
Recent data on the expression of several homeobox genes in the embryonic telencephalon of mammals, birds and reptiles support the homology of a part of the avian pallium, named the Wulst, and at least the more-medial and superior parts of mammalian neocortex. This conclusion is also supported by previous embryological, topological and hodological data. Furthermore, new evidence on the connections and electrophysiological properties of specific subfields within the avian Wulst, and on the thalamic territories that project to these fields, supports the more-specific conclusion that a primary visual area and a primary somatosensory-somatomotor area are present in the avian Wulst; these areas are likely to be homologous to their counterparts in mammals. In spite of this, developmental, morphological and comparative evidence indicate that some structural and physiological traits that appear to be similar in the Wulst and neocortex (such as the lamination or binocularity) evolved independently in birds and mammals.
Journal of Neuroscience Methods | 2000
Anton Reiner; C.Leonardus Veenman; Loreta Medina; Yun Jiao; Nobel Del Mar; Marcia G. Honig
Biotinylated dextran amines (BDA) are highly sensitive tools for anterograde and retrograde pathway tracing studies of the nervous system. BDA can be reliably delivered into the nervous system by iontophoretic or pressure injection and visualized with an avidin-biotinylated HRP (ABC) procedure, followed by a standard or metal-enhanced diaminobenzidine (DAB) reaction. High molecular weight BDA (10 k) yields sensitive and exquisitely detailed labeling of axons and terminals, while low molecular weight BDA (3 k) yields sensitive and detailed retrograde labeling of neuronal cell bodies. The detail of neuronal cell body labeling can be Golgi-like. BDA tolerates EM fixation and processing well and can, therefore, be readily used in ultrastructural studies. Additionally, BDA can be combined with other anterograde or retrograde tracers (e.g. PHA-L or cholera toxin B fragment) and visualized either by multi-color DAB multiple-labeling - if permanent labels are desired, or by using multiple simultaneous immunofluorescence - if fluorescence viewing is desired. In the same manner, BDA pathway tracing and neurotransmitter immunolabeling can be combined. Note that BDA pathway tracing can also be combined with anterograde or retrograde labeling with fluorescent dextran amines, if one wishes to exclusively use tracers with the favorable transport properties and sensitivities of dextran amines. In this case, the BDA can be visualized together with the fluorescent dextran amines using fluorescence labeling for the BDA, or the fluorescent dextran amines can be visualized together with the BDA by multicolor DAB labeling via immunolabeling of the fluorescent dextran amines using anti-fluorophore antisera. BDA is, thus, a flexible and valuable pathway tracing tool that has gained widespread popularity in recent years.
Brain Research Reviews | 1990
Anton Reiner; Keith D. Anderson
The neurotransmitter organization of striatal projection neurons appears to be less complex than once thought. Only 4 major evolutionarily conserved populations appear to be present. The neurons of two of these populations contain SP, DYN and GABA, with one of these two populations consisting of striatonigral projection neurons and the other of striatopallidal projection neurons. The two additional major populations of striatal projection neurons consist of striatopallidal and striato-nigral neurons that both contain both ENK and GABA. Although these conclusions greatly simplify the understanding of the organization of striatal projection neurons by suggesting that only a few major populations are present, these conclusions complicate understanding of neurotransmission between these neurons and their target areas by suggesting that each neuron utilizes multiple neuroactive substances to influence target neurons. Further studies will therefore be required to explore the mechanisms of neurotransmission by which striatal neurons communicate with their target areas.
Journal of Neuroscience Methods | 1999
Yun Jiao; Z. Sun; Teffy Lee; Francesca Fusco; Toya D.H. Kimble; Christopher A. Meade; Sherry Cuthbertson; Anton Reiner
The masking of antigens by aldehyde-containing fixatives or by paraffin embedding procedures is a problem for immunohistochemical studies. Enzymatic digestion, formic acid treatment, microwave heating and autoclave heating have been used to deal with this problem, with microwave heating-based antigen retrieval having become widely used as the method of choice. Microwave heating, however, has the shortcoming that it is difficult to precisely control the heating temperature and it is difficult to apply this method of heating to free-floating sections without damaging the sections. We describe here a simple, reliable and sensitive antigen retrieval method that uses water-bath heating. By this method, the temperature can be precisely controlled to yield effective antigen retrieval with minimal tissue damage in free-floating or paraffin-embedded slide-mounted sections. We found that the best results were obtained with a 30 min incubation in a 10-50 mM sodium citrate solution (pH 8.5-9.0) preheated to and maintained at 80 degrees C in a water-bath, followed by 30 min incubation in 0.3-3% nonfat dry milk to reduce nonspecfic staining. This method is highly effective for both 40 microm free floating sections, slide-mounted cryostat sections and paraffin-embedded slide-mounted sections, and it works well for tissue from diverse species (human, rat, mouse, pigeon, and zebra finch) and for diverse antigens (e.g. enkephalin, substance P, huntingtin, GluR1, GFAP, and ubiquitin). This method was also found to enhance immunolabeling in glutaraldehyde-fixed tissue that had been prepared for ultrastructural examination, without having a deleterious effect on the ultrastructure.
Trends in Neurosciences | 1993
D. James Surmeier; Anton Reiner; Michael S. Levine; Marjorie A. Ariano
The postsynaptic effects of dopamine in the neostriatum are mediated by five G-protein-coupled receptors. The extent to which these receptors are co-localized in neostriatal neurons has become controversial. This debate has far-reaching implications for treatment strategies in disorders of dopaminergic signaling, such as Parkinsons disease and schizophrenia. This review examines the molecular and cellular evidence for and against co-localization, including new information derived from single-cell mRNA amplification and patch-clamping of isolated neurons. It is concluded that this evidence is largely consistent with co-localization of functionally significant receptors of the D1 and D2 families in the majority of neostriatal efferent neurons. This conclusion has important implications for parallel processing models of the neostriatum.
The Journal of Neuroscience | 2004
Wanlong Lei; Yun Jiao; Nobel Del Mar; Anton Reiner
The two main types of corticostriatal neurons are those that project only intratelencephalically (IT-type), the intrastriatal terminals of which are 0.41 μm in mean diameter, and those that send their main axon into pyramidal tract and have a collateral projection to striatum (PT-type), the intrastriatal terminals of which are 0.82 μm in mean diameter. We used three approaches to examine whether the two striatal projection neuron types (striatonigral direct pathway vs striatopallidal indirect pathway) differ in their input from IT-type and PT-type neurons. First, we retrogradely labeled one striatal projection neuron type or the other with biotinylated dextran amine (BDA)-3000 molecular weight. We found that terminals making asymmetric axospinous contact with striatonigral neurons were 0.43 μm in mean diameter, whereas those making asymmetric axospinous contact with striatopallidal neurons were 0.69 μm. Second, we preferentially immunolabeled striatonigral neurons for D1 dopamine receptors or striatopallidal neurons for D2 dopamine receptors and found that axospinous terminals had a smaller mean size (0.45 μm) on D1+ spines than on D2+ spines (0.61 μm). Finally, we combined selective BDA labeling of IT-type or PT-type terminals with immunolabeling for D1 or D2, and found that IT-type terminals were twice as common as PT-type on D1+ spines, whereas PT-type terminals were four times as common as IT-type on D2+ spines. These various results suggest that striatonigral neurons preferentially receive input from IT-type cortical neurons, whereas striatopallidal neurons receive greater input from PT-type cortical neurons. This differential cortical connectivity may further the roles of the direct and indirect pathways in promoting desired movements and suppressing unwanted movements, respectively.
Trends in Neurosciences | 2005
Allison J. Doupe; David J. Perkel; Anton Reiner; Edward A. Stern
Recent advances in anatomical, physiological and histochemical characterization of avian basal ganglia neurons and circuitry have revealed remarkable similarities to mammalian basal ganglia. A modern revision of the avian anatomical nomenclature has now provided a common language for studying the function of the cortical-basal-ganglia-cortical loop, enabling neuroscientists to take advantage of the specialization of basal ganglia areas in various avian species. For instance, songbirds, which learn their vocal motor behavior using sensory feedback, have specialized a portion of their cortical-basal ganglia circuitry for song learning and production. This discrete circuit dedicated to a specific sensorimotor task could be especially tractable for elucidating the interwoven sensory, motor and reward signals carried by basal ganglia, and the function of these signals in task learning and execution.