Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nobel Del Mar is active.

Publication


Featured researches published by Nobel Del Mar.


Journal of Neuroscience Methods | 2000

Pathway tracing using biotinylated dextran amines

Anton Reiner; C.Leonardus Veenman; Loreta Medina; Yun Jiao; Nobel Del Mar; Marcia G. Honig

Biotinylated dextran amines (BDA) are highly sensitive tools for anterograde and retrograde pathway tracing studies of the nervous system. BDA can be reliably delivered into the nervous system by iontophoretic or pressure injection and visualized with an avidin-biotinylated HRP (ABC) procedure, followed by a standard or metal-enhanced diaminobenzidine (DAB) reaction. High molecular weight BDA (10 k) yields sensitive and exquisitely detailed labeling of axons and terminals, while low molecular weight BDA (3 k) yields sensitive and detailed retrograde labeling of neuronal cell bodies. The detail of neuronal cell body labeling can be Golgi-like. BDA tolerates EM fixation and processing well and can, therefore, be readily used in ultrastructural studies. Additionally, BDA can be combined with other anterograde or retrograde tracers (e.g. PHA-L or cholera toxin B fragment) and visualized either by multi-color DAB multiple-labeling - if permanent labels are desired, or by using multiple simultaneous immunofluorescence - if fluorescence viewing is desired. In the same manner, BDA pathway tracing and neurotransmitter immunolabeling can be combined. Note that BDA pathway tracing can also be combined with anterograde or retrograde labeling with fluorescent dextran amines, if one wishes to exclusively use tracers with the favorable transport properties and sensitivities of dextran amines. In this case, the BDA can be visualized together with the fluorescent dextran amines using fluorescence labeling for the BDA, or the fluorescent dextran amines can be visualized together with the BDA by multicolor DAB labeling via immunolabeling of the fluorescent dextran amines using anti-fluorophore antisera. BDA is, thus, a flexible and valuable pathway tracing tool that has gained widespread popularity in recent years.


The Journal of Neuroscience | 2004

Evidence for Differential Cortical Input to Direct Pathway versus Indirect Pathway Striatal Projection Neurons in Rats

Wanlong Lei; Yun Jiao; Nobel Del Mar; Anton Reiner

The two main types of corticostriatal neurons are those that project only intratelencephalically (IT-type), the intrastriatal terminals of which are 0.41 μm in mean diameter, and those that send their main axon into pyramidal tract and have a collateral projection to striatum (PT-type), the intrastriatal terminals of which are 0.82 μm in mean diameter. We used three approaches to examine whether the two striatal projection neuron types (striatonigral direct pathway vs striatopallidal indirect pathway) differ in their input from IT-type and PT-type neurons. First, we retrogradely labeled one striatal projection neuron type or the other with biotinylated dextran amine (BDA)-3000 molecular weight. We found that terminals making asymmetric axospinous contact with striatonigral neurons were 0.43 μm in mean diameter, whereas those making asymmetric axospinous contact with striatopallidal neurons were 0.69 μm. Second, we preferentially immunolabeled striatonigral neurons for D1 dopamine receptors or striatopallidal neurons for D2 dopamine receptors and found that axospinous terminals had a smaller mean size (0.45 μm) on D1+ spines than on D2+ spines (0.61 μm). Finally, we combined selective BDA labeling of IT-type or PT-type terminals with immunolabeling for D1 or D2, and found that IT-type terminals were twice as common as PT-type on D1+ spines, whereas PT-type terminals were four times as common as IT-type on D2+ spines. These various results suggest that striatonigral neurons preferentially receive input from IT-type cortical neurons, whereas striatopallidal neurons receive greater input from PT-type cortical neurons. This differential cortical connectivity may further the roles of the direct and indirect pathways in promoting desired movements and suppressing unwanted movements, respectively.


The Journal of Comparative Neurology | 2003

Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats

Anton Reiner; Yun Jiao; Nobel Del Mar; Antonio Vincent Laverghetta; Wan Long Lei

Two types of corticostriatal projection neurons have been identified: 1) one whose intrastriatal arborization arises as a collateral of a projection to the ipsilateral brainstem via the pyramidal tract (PT‐type); and 2) one that projects intratelencephalically to the cortex and striatum, in many cases bilaterally, but not extratelencephalically (IT‐type). To assess possible functional differences between these two neuron types, we characterized their laminar location in the cortex, their perikaryal size, and the morphology of their intrastriatal terminals. IT‐type neurons were retrogradely labeled by tetramethylrhodamine‐dextran amine (RDA)3k injection into the contralateral striatum, whereas their intrastriatal terminals were labeled anterogradely by biotinylated dextran amine (BDA)10k injection into the contralateral motor or primary somatosensory cortex. To label PT‐type neurons and their ipsilateral intrastriatal terminals retrogradely, BDA3k was injected into the pontine pyramidal tract. We found that IT‐type neuronal perikarya are medium‐sized (12–13 μm) and located in layer III and upper layer V, whereas PT‐type perikarya are larger (18–19 μm) and most commonly located in lower layer V. At the electron microscopic level, the intrastriatal terminals of both corticostriatal neuron types made asymmetric synaptic contact with spine heads and less frequently with dendrites. IT‐type axospinous terminals were characteristically small (0.4–0.5 μm) and regular in shape, whereas PT‐type terminals were typically large (0.8–0.9 μm) and often irregular in shape. Perforated postsynaptic densities were common for PT‐type terminals, but not IT‐type. The clear differences between these two corticostriatal neuron types in perikaryal size and laminar location in the cortex, and in the size and shape of their intrastriatal terminals, suggest that they may differ in the nature of their influence on the striatum. J. Comp. Neurol. 457:420–440, 2003.


The Journal of Comparative Neurology | 2002

Cellular localization and development of neuronal intranuclear inclusions in striatal and cortical neurons in R6/2 transgenic mice

Christopher A. Meade; Yun Ping Deng; Francesca Fusco; Nobel Del Mar; Steven M. Hersch; Dan Goldowitz; Anton Reiner

The cellular localization and development of neuronal intranuclear inclusions (NIIs) in cortex and striatum of R6/2 HD transgenic mice were studied to ascertain the relationship of NIIs to symptom formation in these mice and gain clues regarding the possible relationship of NII formation to neuropathology in Huntingtons disease (HD). All NIIs observed in R6/2 mice were ubiquitinated, and no evidence was observed for a contribution to them from wild‐type huntingtin; they were first observed in cortex and striatum at 3.5 weeks of age. In cortex, NIIs increased rapidly in size and prevalence after their appearance. Generally, cortical projection neurons developed NIIs more rapidly than cortical interneurons containing calbindin or parvalbumin. Few cortical somatostatinergic interneurons, however, formed NIIs. In striatum, calbindinergic projection neurons and parvalbuminergic interneurons rapidly formed NIIs, but they formed more gradually in cholinergic interneurons, and few somatostatinergic interneurons developed NIIs. Striatal NIIs tended to be smaller than those in cortex. The early accumulation of NIIs in cortex and striatum in R6/2 mice is consistent with the early appearance of motor and learning abnormalities in these mice, and the eventual pervasiveness of NIIs at ages at which severe abnormalities are evident is consistent with their contribution to a neuronal dysfunction underlying the abnormalities. That cortex develops larger NIIs than striatum, however, is inconsistent with the preferential loss of striatal neurons in HD but is consistent with recent evidence of early morphological abnormalities in cortical neurons in HD. That calbindinergic and parvalbuminergic striatal neurons develop large NIIs is consistent with a contribution of nuclear aggregate formation to their high degree of vulnerability in HD. J. Comp. Neurol. 449:241–269, 2002.


Frontiers in Neurology | 2014

A Novel Closed-Head Model of Mild Traumatic Brain Injury Caused by Primary Overpressure Blast to the Cranium Produces Sustained Emotional Deficits in Mice

Scott A. Heldt; Andrea J. Elberger; Yunping Deng; Natalie Guley; Nobel Del Mar; Joshua Rogers; Gy Won Choi; Jessica Ferrell; Tonia S. Rex; Marcia G. Honig; Anton Reiner

Emotional disorders are a common outcome from mild traumatic brain injury (TBI) in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, to create mild TBI. We found that 20-psi blasts in 3-month-old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25–40 psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50–60 psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2–8 weeks after blast, 50–60 psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, but did observe scattered axonal degeneration in brain sections from 50 to 60 psi mice 3–8 weeks after blast. Thus, the TBI caused by single 50–60 psi blasts in mice exhibits the minimal neuronal loss coupled to “diffuse” axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI.


International Journal of Developmental Neuroscience | 1996

Up-regulation of a keratan sulfate proteoglycan following cortical injury in neonatal rats.

Eldon E Geisert; Deborah J. Bidanset; Nobel Del Mar; John A. Robson

The up‐regulation of the keratan sulfate proteoglycan (ABAKAN) was examined using indirect immunohistochemical methods. Previous studies indicate that the keratan sulfate proteoglycan is associated with astrocytes in the optic nerve and in the developing rat brain. In model culture systems, this proteoglycan is capable of inhibiting the growth of neurites over laminin. To determine whether the proteoglycan is up‐regulated specifically during reactive gliosis, stab wounds were made in the cerebral cortex of early postnatal rats, and the up‐regulation of the proteoglycan was related to the developmentally regulated gliotic response to injury. Following a stab wound in the cortex of the late postnatal rat, reactive gliosis was consistently observed along with an up‐regulation of ABAKAN. When the cortex was injured on postnatal day 2, there was a variable gliotic response and considerable variation in the regulation of proteoglycan expression. Biochemical analysis revealed that ABAKAN is a large proteoglycan with multiple keratan sulfate side‐chains, at least one chondroitin sulfate side‐chain and at least one additional carbohydrate chain with a terminal 3‐sulfoglucuronic acid. Taken together, these data demonstrate that the boundary proteoglycan ABAKAN is also associated with reactive gliosis during early postnatal development.


The Journal of Comparative Neurology | 2007

R6/2 neurons with intranuclear inclusions survive for prolonged periods in the brains of chimeric mice

Anton Reiner; Nobel Del Mar; Yun Ping Deng; Christopher A. Meade; Z. Sun; Dan Goldowitz

The R6/2 mouse possesses mutant exon 1 of human Hdh, and R6/2 mice with 150 CAG repeats show neurological abnormalities by 10 weeks and die by 15 weeks. Few brain abnormalities, however, are evident at death, other than widespread ubiquitinated neuronal intranuclear inclusions (NIIs). We constructed R6/2t+/t− ↔ wildtype (WT) chimeric mice to prolong survival of R6/2 cells and determine if neuronal death and/or neuronal injury become evident with longer survival. ROSA26 mice (which bear a lacZ transgene) were used as WT to distinguish between R6/2 and WT neurons. Chimeric mice consisting partly of R6/2 cells lived longer than pure R6/2 mice (up to 10 months), with the survival proportional to the R6/2 contribution. Genotypically R6/2 cells formed NIIs in the chimeras, and these NIIs grew only slightly larger than in 12‐week pure R6/2 mice, even after 10 months. Additionally, neuropil aggregates formed near R6/2 neurons in chimeric mice older than 15 weeks. Thus, R6/2 neurons could survive well beyond 15 weeks in chimeras. Moreover, little neuronal degeneration was evident in either cortex or striatum by routine histological stains. Nonetheless, striatal shrinkage and ventricular enlargement occurred, and striatal projection neuron markers characteristically reduced in Huntingtons disease were diminished. Consistent with such abnormalities, cortex and striatum in chimeras showed increased astrocytic glial fibrillary acidic protein. These results suggest that while cortical and striatal neurons can survive nearly a year with nuclear and extranuclear aggregates of mutant huntingtin, such lengthy survival does reveal cortical and striatal abnormality brought on by the truncated mutant protein. J. Comp. Neurol. 505:603–629, 2007.


Experimental Eye Research | 2010

Choroidal Blood Flow Compensation in Rats for Arterial Blood Pressure Decreases is Neuronal Nitric Oxide-Dependent but Compensation for Arterial Blood Pressure Increases is not

Anton Reiner; Chunyan Li; Nobel Del Mar; Malinda E.C. Fitzgerald

Choroidal blood flow (ChBF) compensates for changes in arterial blood pressure (ABP) and thereby remains relatively stable within a +/-40 mmHg range of basal ABP in rabbits, humans and pigeons. In the present study, we investigated if ChBF can compensate for increases and decreases in ABP in rats. ChBF was continuously monitored using laser Doppler flowmetry in anesthetized rats, and ABP measured via the femoral artery. At multiple intervals over a 2-4 h period during which ABP varied freely, ChBF and ABP were sampled and the results compiled across rats. We found that ChBF remained near baseline over an ABP range from 40 mmHg above basal ABP (90-100 mmHg) to 40 mmHg below basal ABP, but largely followed ABP linearly below 60 mmHg. Choroidal vascular resistance increased linearly as BP increased above 100 mmHg, and decreased linearly as BP declined from basal to 60 mmHg, but resistance declined no further below 60 mmHg. Inhibition of nitric oxide (NO) formation by either a selective inhibitor of neuronal nitric oxide synthase (NOS) (N(omega)-propyl-L-arginine) or a nonselective inhibitor of both neuronal NOS and endothelial NOS (N(omega)-nitro-l-arginine methyl ester) did not affect compensation above 100 mmHg ABP, but did cause ChBF to linearly follow declines in BP below 90 mmHg. In NOS-inhibited rats, vascular resistance increased linearly with BP above 100 mmHg, but remained at baseline below 90 mmHg. These findings reveal that ChBF in rats, as in rabbits, humans and pigeons, compensates for rises and/or declines in arterial blood pressure so as to remain relatively stable within a physiological range of ABPs. The ChBF compensation for low ABP in rats is dependent on choroidal vasodilation caused by neuronal NO formation but not the compensation for elevated BP, implicating parasympathetic nervous system vasodilation in the ChBF compensation to low ABP.


Frontiers in Systems Neuroscience | 2015

Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats

Yunping Deng; José L. Lanciego; Lydia Kerkerian-Le Goff; Patrice Coulon; Pascal Salin; Philippe Kachidian; Wanlong Lei; Nobel Del Mar; Anton Reiner

In prior studies, we described the differential organization of corticostriatal and thalamostriatal inputs to the spines of direct pathway (dSPNs) and indirect pathway striatal projection neurons (iSPNs) of the matrix compartment. In the present electron microscopic (EM) analysis, we have refined understanding of the relative amounts of cortical axospinous vs. axodendritic input to the two types of SPNs. Of note, we found that individual dSPNs receive about twice as many axospinous synaptic terminals from IT-type (intratelencephalically projecting) cortical neurons as they do from PT-type (pyramidal tract projecting) cortical neurons. We also found that PT-type axospinous synaptic terminals were about 1.5 times as common on individual iSPNs as IT-type axospinous synaptic terminals. Overall, a higher percentage of IT-type terminals contacted dSPN than iSPN spines, while a higher percentage of PT-type terminals contacted iSPN than dSPN spines. Notably, IT-type axospinous synaptic terminals were significantly larger on iSPN spines than on dSPN spines. By contrast to axospinous input, the axodendritic PT-type input to dSPNs was more substantial than that to iSPNs, and the axodendritic IT-type input appeared to be meager and comparable for both SPN types. The prominent axodendritic PT-type input to dSPNs may accentuate their PT-type responsiveness, and the large size of axospinous IT-type terminals on iSPNs may accentuate their IT-type responsiveness. Using transneuronal labeling with rabies virus to selectively label the cortical neurons with direct input to the dSPNs projecting to the substantia nigra pars reticulata, we found that the input predominantly arose from neurons in the upper layers of motor cortices, in which IT-type perikarya predominate. The differential cortical input to SPNs is likely to play key roles in motor control and motor learning.


Investigative Ophthalmology & Visual Science | 2011

Age-Related Impairment in Choroidal Blood Flow Compensation for Arterial Blood Pressure Fluctuation in Pigeons

Anton Reiner; Nobel Del Mar; Yuri Zagvazdin; Chunyan Li; Malinda E.C. Fitzgerald

PURPOSE Choroidal vessels compensate for changes in systemic blood pressure (BP) so that choroidal blood flow (ChBF) remains stable over a BP range of approximately 40 mm Hg above and below basal. Because of the presumed importance of ChBF regulation for maintenance of retinal health, we investigated if ChBF compensation for BP fluctuation in pigeons fails with age. METHODS Transcleral laser Doppler flowmetry was used to measure ChBF during spontaneous BP fluctuation in anesthetized pigeons ranging in age from 0.5 to 17 years (pigeons can live approximately 20 years in captivity). RESULTS ChBF in <8-year-old pigeons remained near 100% of basal ChBF at BPs ranging 40 mm Hg above and below basal BP (95 mm Hg). Baroregulation failed below approximately 50 mm Hg BP. In ≥8-year-old pigeons, ChBF compensation was absent at >90 mm Hg BP, with ChBF linearly following BP. Over the 60 to 90 mm Hg range, ChBF in ≥8-year-old pigeons was maintained at 60-70% of young basal ChBF. Below approximately 55 mm Hg, baroregulation again followed BP linearly. CONCLUSIONS Age-related ChBF baroregulatory impairment occurs in pigeons, with ChBF linear with above-basal BP, and ChBF failing to adequately maintain ChBF during below-basal BP. Defective autonomic sympathetic and parasympathetic neurogenic control, or defective myogenic control, may cause these baroregulatory defects. In either case, overperfusion during high BP may cause oxidative injury to the outer retina, whereas underperfusion during low BP may result in deficient nutrient supply and waste removal, with both abnormalities contributing to age-related retinal pathology and vision loss.

Collaboration


Dive into the Nobel Del Mar's collaboration.

Top Co-Authors

Avatar

Anton Reiner

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunyan Li

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Marcia G. Honig

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Natalie Guley

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Yunping Deng

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Andrea J. Elberger

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Wei Bu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Yun Jiao

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Dan Goldowitz

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge