Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Camaioni is active.

Publication


Featured researches published by Antonella Camaioni.


Cell | 1989

Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice

Marialuisa Lavitrano; Antonella Camaioni; Vito Michele Fazio; Susanna Dolci; Maria Giulia Farace; Corrado Spadafora

Mature mouse sperm cells incubated in an isotonic buffer with cloned DNA capture DNA molecules over a 15 min period. Spermatozoa incubated with pSV2CAT plasmid in either circular or linear form were used to fertilize mouse eggs in vitro. Sequences complementary to pSV2CAT were identified in approximately 30% of 250 progeny by Southern blotting. A genomic library was constructed from the DNA of a positive mouse. Three positive clones were identified and two adjacent HincII restriction fragments of 240 and 370 bp showed identical sequences to the corresponding fragments of the pSV2CAT plasmid. F1 progeny showed paternal and maternal transmission of the transgenes from founders. CAT gene expression was detected on tissues of adult F1 individuals, preferentially on tails and muscle. We conclude that transgenic mice can be obtained using sperm cells as foreign DNA vectors.


ACS Nano | 2011

Low Doses of Pristine and Oxidized Single-Wall Carbon Nanotubes Affect Mammalian Embryonic Development

Antonio Pietroiusti; Micol Massimiani; Ivana Fenoglio; Massimiliano Colonna; Federica Valentini; Giuseppe Palleschi; Antonella Camaioni; Andrea Magrini; Gregorio Siracusa; Antonio Bergamaschi; Alessandro Sgambato; Luisa Campagnolo

Several in vitro and in vivo studies suggest local and systemic effects following exposure to carbon nanotubes. No data are available, however, on their possible embryotoxicity in mammals. In this study, we tested the effect of pristine and oxidized single-wall carbon nanotubes (SWCNTs) on the development of the mouse embryo. To this end, SWCNTs (from 10 ng to 30 μg/mouse) were administered to female mice soon after implantation (postcoital day 5.5); 10 days later, animals were sacrificed, and uteri, placentas, and fetuses examined. A high percentage of early miscarriages and fetal malformations was observed in females exposed to oxidized SWCNTs, while lower percentages were found in animals exposed to the pristine material. The lowest effective dose was 100 ng/mouse. Extensive vascular lesions and increased production of reactive oxygen species (ROS) were detected in placentas of malformed but not of normally developed fetuses. Increased ROS levels were likewise detected in malformed fetuses. No increased ROS production or evident morphological alterations were observed in maternal tissues. No fetal and placental abnormalities were ever observed in control animals. In parallel, SWCNT embryotoxicity was evaluated using the embryonic stem cell test (EST), a validated in vitro assay developed for predicting embryotoxicity of soluble chemical compounds, but never applied in full to nanoparticles. The EST predicted the in vivo data, identifying oxidized SWCNTs as the more toxic compound.


Journal of Biological Chemistry | 2007

PTX3 Interacts with Inter-α-trypsin Inhibitor IMPLICATIONS FOR HYALURONAN ORGANIZATION AND CUMULUS OOPHORUS EXPANSION

Laura Scarchilli; Antonella Camaioni; Barbara Bottazzi; Veronica Negri; Andrea Doni; Livija Deban; Antonio Bastone; Giovanni Salvatori; Alberto Mantovani; Gregorio Siracusa; Antonietta Salustri

Pentraxin 3 (PTX3) and heavy chains (HCs) of inter-α-trypsin inhibitor (IαI) are essential for hyaluronan (HA) organization within the extracellular matrix of the cumulus oophorus, which is critical for in vivo oocyte fertilization and female fertility. In this study, we examined the possibility that these molecules interact and cooperate in this function. We show that HCs and PTX3 colocalize in the cumulus matrix and coimmunoprecipitate from cumulus matrix extracts. Coimmunoprecipitation experiments and solid-phase binding assays performed with purified human IαI and recombinant PTX3 demonstrate that their interaction is direct and not mediated by other matrix components. PTX3 does not bind to IαI subcomponent bikunin and, accordingly, bikunin does not compete for the binding of PTX3 to IαI, indicating that PTX3 interacts with IαI subcomponent HC only. Recombinant PTX3-specific N-terminal region, but not the PTX3-pentraxin C-terminal domain, showed the same ability as full-length protein to bind to HCs and to enable HA organization and matrix formation by Ptx3-/- cumulus cell oocyte complexes cultured in vitro. Furthermore, a monoclonal antibody raised against PTX3 N terminus, which inhibits PTX3/IαI interaction, also prevents recombinant full-length PTX3 from restoring a normal phenotype to in vitro-cultured Ptx3-/- cumuli. These results indicate that PTX3 directly interacts with HCs of IαI and that such interaction is essential for organizing HA in the viscoelastic matrix of cumulus oophorus, highlighting a direct functional link between the two molecules.


Biology of Reproduction | 2004

Covalent Transfer of Heavy Chains of Inter-alpha-Trypsin Inhibitor Family Proteins to Hyaluronan in In Vivo and In Vitro Expanded Porcine Oocyte-Cumulus Complexes

Eva Nagyova; Antonella Camaioni; Radek Prochazka; Antonietta Salustri

Abstract Previous studies have shown that the heavy chains (HCs) of serum-derived inter-alpha-trypsin inhibitor (IαI) molecules become covalently linked to hyaluronan (HA) during in vivo mouse cumulus expansion and significantly contribute to cumulus matrix organization. Experiments with mice suggest that the incorporation of such proteins in cumulus matrix appears to be rather complex, involving LH/hCG-induced changes in blood-follicle barrier and functional cooperation between cumulus cells, granulosa cells, and oocyte within the follicle. We demonstrate here that HC-HA covalent complexes are formed during in vivo porcine cumulus expansion as well. Western blot analysis with IαI antibody revealed that follicular fluids from medium-sized follicles and those from large follicles unstimulated with hCG contain high levels of all forms of IαI family members present in pig serum. The same amount of HCs were covalently transferred from IαI molecules to HA when pig oocyte-cumulus complexes (OCCs) were stimulated in vitro with FSH in the presence of pig serum or follicular fluid from unstimulated or hCG-stimulated follicles. In addition, HC-HA coupling activity was stimulated in cumulus cells by FSH treatment also in the absence of oocyte. Collectively, these results indicate that IαI molecules can freely cross the blood follicle barrier and that follicular fluid collected at any stage of folliculogenesis can be successfully used instead of serum for improving OCC maturation. Finally, pig cumulus cells show an autonomous ability to promote the incorporation of IαI HCs in the cumulus matrix.


Experimental Cell Research | 2009

p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells.

Ilana Moscatelli; Enrico Pierantozzi; Antonella Camaioni; Gregorio Siracusa; Luisa Campagnolo

Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75(NTR)), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75(NTR) and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75(NTR) and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75(NTR)/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75(NTR) or TrkA. Interestingly, immunoreactivity to anti-p75(NTR) antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75(NTR), when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75(NTR) is turned on.


Current Medicinal Chemistry | 2012

Physico-Chemical Properties Mediating Reproductive and Developmental Toxicity of Engineered Nanomaterials

Luisa Campagnolo; Micol Massimiani; Andrea Magrini; Antonella Camaioni; Antonio Pietroiusti

With the increasing production of engineered nanomaterials (ENMs) exploited in many consumer products, a wider number of people is expected to be exposed to such materials in the near future, both in occupational and environmental settings. This has raised concerns about the possible implications on public health. In particular, very recently the scientific community has focused on the effect that ENMs might exert on the reproductive apparatus and on embryonic development. Indications that ENMs might have adverse effects on cells of the germ line and on the developing embryos have been reported. In the present minireview we will perform a critical analysis of the published work on reproductive and developmental toxicity of the most commonly used nanoparticles with a major focus on mammalian models. We will place emphasis on the main physico-chemical characteristics that can affect NP behaviour in biological systems, i.e. presence of contaminants and nanoparticle destabilization, size, dosage, presence of functional groups, influence of the solvent used for their suspension in biological media, aggregation/agglomeration, intrinsic chemical composition and protein corona/opsonisation. The importance of this specific field of nanotoxicology is documented by the rapidly increasing number of published papers registered in the last three years, which might be a consequence of the growing concerns on the possible interference of ENMs with reproductive ability and pregnancy outcome, in a time in which reproductive age has increased and the possibility to bear children appears reduced.


Zygote | 1996

Endocrine and paracrine regulation of cumulus expansion

Antonietta Salustri; Antonella Camaioni; Cristina D'Alessandris

In a Graafian follicle, granulosa cells are classified into two principal cell subpopulations: cumulus cells, which are closely associated with the oocyte to form the cumulus cell-oocyte complex (COC), and mural granulosa cells, which are organised as a stratified epithelium at the periphery of the follicle. Following the preovulatory gonadotropin surge, cumulus cells lose contact with mural granulosa cells and start to synthesise and secrete a large amount of hyaluronan (HA), a glycosaminoglycan with high molecular weight and large hydrodynamic domains (Salustri et al. , 1992). Proteins derived from serum (Chen et al. , 1992, 1994) and synthesised by cumulus cells (Camaioni et al. , 1993, 1996) organise the strands of HA into an intercellular elastic network that traps the cumulus cells and the oocyte in a unit which can not be mechanically dissociated – a process also referred to as cumulus expansion. At ovulation, the expanded COC is released through the ruptured follicle wall and transferred to the oviduct. The matrix in the expanded COC facilitates its extrusion from the follicle and its capture by oviductal fimbria, and provides, together with the cumulus cells, a suitable microenvironment for sperm penetration and fertilisation (for references see Salustri et al. , 1993).


Matrix Biology | 2011

Implication of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly.

E Ievoli; Ragnar Lindstedt; Antonio Inforzato; Antonella Camaioni; Francesca Palone; Anthony J. Day; Alberto Mantovani; Giovanni Salvatori; Antonietta Salustri

Pentraxin 3 (PTX3) plays a key role in the formation of the hyaluronan-rich matrix of the cumulus oophorus surrounding ovulated eggs that is required for successful fertilization and female fertility. PTX3 is a multimeric protein consisting of eight identical protomers held together by a combination of non-covalent interactions and disulfide bonds. Recent findings suggest that the oligomeric status of PTX3 is important for stabilizing the cumulus matrix. Because the role of PTX3 in the cumulus resides in the unique N-terminal sequence of the protomer, we investigated further this issue by testing the ability of distinct Cys/Ser mutants of recombinant N-terminal region of PTX3 (N_PTX3) with different oligomeric arrangement to promote in vitro normal expansion in cumuli from Ptx3-null mice. Here we report that the dimer of the N_PTX3 is unable to rescue cumulus matrix organization, and that the tetrameric assembly of the protein is the minimal oligomeric state required for accomplishing this function. We have previously demonstrated that PTX3 binds to HCs of IαI and TSG-6, which are essential for cumulus matrix formation and able to interact with hyaluronan. Interestingly, here we show by solid-phase binding experiments that the dimer of the N_PTX3 retains the ability to bind to both IαI and TSG-6, suggesting that the octameric structure of PTX3 provides multiple binding sites for each of these ligands. These findings support the hypothesis that PTX3 contributes to cumulus matrix organization by cross-linking HA polymers through interactions with multiple HCs of IαI and/or TSG-6. The N-terminal PTX3 tetrameric oligomerization was recently reported to be also required for recognition and inhibition of FGF2. Given that this growth factor has been detected in the mammalian preovulatory follicle, we wondered whether FGF2 negatively influences cumulus expansion and PTX3 may also serve in vivo to antagonize its activity. We found that a molar excess of FGF2, above PTX3 binding capacity, does not affect in vitro cumulus matrix formation thus ruling out this possibility. In conclusion, the data strength the view that PTX3 acts as a nodal molecule in cross-linking HA in the matrix.


Biomedical Materials | 2012

Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites

Giorgia Lehmann; Ilaria Cacciotti; Paola Palmero; Laura Montanaro; Alessandra Bianco; Luisa Campagnolo; Antonella Camaioni

Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.


Molecular Reproduction and Development | 2011

Activation of cumulus cell SMAD2/3 and epidermal growth factor receptor pathways are involved in porcine oocyte–cumulus cell expansion and steroidogenesis

Eva Nagyova; Antonella Camaioni; Sona Scsukova; Alzbeta Mlynarcikova; Radek Prochazka; Lucie Nemcova; Antonietta Salustri

Several lines of evidence suggest that in mice the activation of SMAD2/3 signaling by oocyte secreted factors, together with epidermal growth factor receptor (EGFR) activation, is essential to induce cumulus expansion. Here we show that inhibition of EGFR kinase in follicle stimulating hormone (FSH)‐stimulated porcine oocyte–cumulus cell complex (OCCs) strongly decreases hyaluronan (HA) synthesis and its retention in the matrix, as well as progesterone synthesis. Although porcine cumulus cells undergo expansion independently of oocytes, we use biochemical and gene expression analyses to show that they do require activation of SMAD2/3 for optimal stimulation of HA synthesis and proteins involved in the organization of this polymer in the expanded matrix. Furthermore, FSH‐induced progesterone synthesis by porcine cumulus cells was increased by blocking SMAD2/3 activation. In conclusion, these results support the hypothesis that an FSH–EGF autocrine loop is active in porcine OCCs, and provide the first evidence that the SMAD2/3 signaling pathway is induced by paracrine/autocrine factors in porcine cumulus cells and is involved in the control of both cumulus expansion and steroidogenesis. Mol. Reprod. Dev. 78:391–402, 2011.

Collaboration


Dive into the Antonella Camaioni's collaboration.

Top Co-Authors

Avatar

Antonietta Salustri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Luisa Campagnolo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessandra Bianco

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Ilaria Cacciotti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giorgia Lehmann

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Andrea Magrini

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Antonio Pietroiusti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Gregorio Siracusa

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Micol Massimiani

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Eva Nagyova

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge