Antonietta Salustri
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonietta Salustri.
Nature | 2002
Cecilia Garlanda; Emilio Hirsch; Silvia Bozza; Antonietta Salustri; Marika De Acetis; Rachele Nota; Alessia Maccagno; Federica Riva; Barbara Bottazzi; Giuseppe Peri; Andrea Doni; Luca Vago; Marina Botto; Rita De Santis; Paolo Carminati; Gregorio Siracusa; Fiorella Altruda; Annunciata Vecchi; Luigina Romani; Alberto Mantovani
Pentraxins are a superfamily of conserved proteins that are characterized by a cyclic multimeric structure. The classical short pentraxins, C-reactive protein (CRP) and serum amyloid P component (SAP), are acute-phase proteins produced in the liver in response to inflammatory mediators. Short pentraxins regulate innate resistance to microbes and the scavenging of cellular debris and extracellular matrix components. In contrast, long pentraxins have an unrelated, long amino-terminal domain coupled to the carboxy-terminal pentraxin domain, and differ, with respect to short pentraxins, in their gene organization, chromosomal localization, cellular source, and in their stimuli-inducing and ligand-recognition ability. To investigate the in vivo function of the long pentraxin PTX3, we generated mice deficient in Ptx3 by homologous recombination. Ptx3-null mice were susceptible to invasive pulmonary aspergillosis. Ptx3 binds selected microbial agents, including conidia of Aspergillus fumigatus, and we found that susceptibility of Ptx3-null mice was associated with defective recognition of conidia by alveolar macrophages and dendritic cells, as well as inappropriate induction of an adaptive type 2 response. Thus, the long pentraxin Ptx3 is a secreted pattern-recognition receptor that has a non-redundant role in resistance to selected microbial agents, in particular to the opportunistic fungal pathogen Aspergillus fumigatus.
Development | 2004
Antonietta Salustri; Cecilia Garlanda; Emilio Hirsch; Marika De Acetis; Alessia Maccagno; Barbara Bottazzi; Andrea Doni; Antonio Bastone; Giovanna Mantovani; Paolo Beck Peccoz; Giovanni Salvatori; David J. Mahoney; Anthony J. Day; Gregorio Siracusa; Luigina Romani; Alberto Mantovani
PTX3 is a prototypic long pentraxin that plays a non-redundant role in innate immunity against selected pathogens and in female fertility. Here, we report that the infertility of Ptx3–/– mice is associated with severe abnormalities of the cumulus oophorus and failure of in vivo, but not in vitro, oocyte fertilization. PTX3 is produced by mouse cumulus cells during cumulus expansion and localizes in the matrix. PTX3 is expressed in the human cumulus oophorus as well. Cumuli from Ptx3–/– mice synthesize normal amounts of hyaluronan (HA), but are unable to organize it in a stable matrix. Exogenous PTX3 restores a normal cumulus phenotype. Incorporation in the matrix of inter-α-trypsin inhibitor is normal in Ptx3–/– cumuli. PTX3 does not interact directly with HA, but it binds the cumulus matrix hyaladherin tumor necrosis factor α-induced protein 6 (TNFAIP6, also known as TSG6) and thereby may form multimolecular complexes that can cross-link HA chains. Thus, PTX3 is a structural constituent of the cumulus oophorus extracellular matrix essential for female fertility.
Development | 2003
Csaba Fülöp; Sándor Szántó; Durba Mukhopadhyay; Tamás Bárdos; Rajesh V. Kamath; Marylin S. Rugg; Anthony J. Day; Antonietta Salustri; Vincent C. Hascall; Tibor T. Glant
Mucification of the cumulus layer around the oocyte is an obligatory process for female fertility. Tumor necrosis factor-induced protein-6 (TNFIP6 or TSG6) has been shown to be specifically expressed during this process. We have generated TNFIP6-deficient mice and tested the ability of their cumulus cells to undergo mucification. Cumulus cell-oocyte complexes fail to expand in TNFIP6-deficient female mice because of the inability of the cumulus cells to assemble their hyaluronan-rich extracellular matrix. The impaired cumulus matrix formation is due to the lack of covalent complexes between hyaluronan and the heavy chains of the inter-α-trypsin inhibitor family. As a consequence, TNFIP6-deficient females are sterile. Cultured TNFIP6-deficient cumulus cell-oocyte complexes also fail to expand when stimulated with dibutyryl cyclic AMP or epidermal growth factor. Recombinant TNFIP6 is able to catalyze the covalent transfer of heavy chains to hyaluronan in a cell-free system, restore the expansion of Tnfip6-null cumulus cell-oocyte complexes in vitro, and rescue the fertility in Tnfip6-null females. These results provide clear evidence that TNFIP6 is a key catalyst in the formation of the cumulus extracellular matrix and indispensable for female fertility.
Journal of Biological Chemistry | 1997
Evelina Tirone; Cristina D'Alessandris; Vincent C. Hascall; Gregorio Siracusa; Antonietta Salustri
Expansion of the cumulus cell-oocyte complex (COC) in the preovulatory mammalian follicle requires a transient induction of hyaluronan (HA) synthesis by the cumulus cells. We studied the interactions of known factors that regulate this process by isolating compact COCs from mice and inducing their expansion in vitro. Maximum HA synthesis requires either follicle-stimulating hormone (FSH) or epidermal growth factor (EGF) in combination with either a soluble factor(s) produced by the oocyte or transforming growth factor β1. FSH (or EGF) exerts its effects during the first 2 h of incubation, before HA synthesis actually begins. The oocyte factor(s) (or transforming growth factor β1) exerts its effects from 2 h onwards and must be continuously present throughout the subsequent ∼10 h to achieve a maximum level of HA synthesis. FSH stimulates intracellular cAMP synthesis, which correlates with net HA production up to ∼14 fmol/COC at 5 ng/ml FSH; however, higher concentrations of FSH increase cAMP levels ∼10-fold higher with no additional effect on HA synthesis. EGF at saturating concentrations for HA synthesis does not stimulate cAMP above basal levels. Tyrosine kinase inhibitors genistein and tyrphostin AG18 nearly abolish the HA synthesis response to EGF and inhibit the response to FSH by ∼60%, suggesting that a tyrosine kinase activity is involved for both factors, whereas FSH also operates partially through another signaling pathway. Actinomycin D abolishes HA synthesis if added at the beginning of culture and reduces HA synthesis by ∼50% if added between 6-12 h when HA synthesis is normally maximal. The results suggest that regulation of HA synthesis is primarily controlled at the transcriptional level.
Gene | 1997
Csaba Fülöp; Rajesh V. Kamath; Yefu Li; Jeffrey M. Otto; Antonietta Salustri; Björn Olsen; Tibor T. Glant; Vincent C. Hascall
Tumor necrosis factor stimulated gene-6 (TSG-6) has been previously shown to be induced in vitro in several cell types by proinflammatory cytokines, and in vivo in pathological conditions such as rheumatoid arthritis. In this study, we report the complete coding sequence for the mouse TSG-6 protein, and the exon intron structure and the chromosomal localization of the gene. We have identified a 1605 nt cDNA sequence from mouse cumulus cell oocyte complexes (COCs) induced to expand in vivo. The sequence contains an open reading frame of 825 nt that codes for the 275 amino acid TSG-6 protein. The gene contains six exons separated by 1.1-5.8 kb introns and has been localized to the murine chromosome 2 by linkage analysis. Comparative reverse transcription-polymerase chain reaction studies have revealed that TSG-6 mRNA is specifically expressed after COC expansion induced in vivo, identifying the first non-pathological process in which TSG-6 may play an important role. Since TSG-6 binds to hyaluronan and interacts with inter-alpha-trypsin inhibitor (IalphaI), molecules that are essential for matrix formation by COCs, this protein may have a structural role in the matrix or may enhance the antiproteolytic effect of IalphaI to protect the matrix from degradation.
Journal of Biological Chemistry | 2007
Laura Scarchilli; Antonella Camaioni; Barbara Bottazzi; Veronica Negri; Andrea Doni; Livija Deban; Antonio Bastone; Giovanni Salvatori; Alberto Mantovani; Gregorio Siracusa; Antonietta Salustri
Pentraxin 3 (PTX3) and heavy chains (HCs) of inter-α-trypsin inhibitor (IαI) are essential for hyaluronan (HA) organization within the extracellular matrix of the cumulus oophorus, which is critical for in vivo oocyte fertilization and female fertility. In this study, we examined the possibility that these molecules interact and cooperate in this function. We show that HCs and PTX3 colocalize in the cumulus matrix and coimmunoprecipitate from cumulus matrix extracts. Coimmunoprecipitation experiments and solid-phase binding assays performed with purified human IαI and recombinant PTX3 demonstrate that their interaction is direct and not mediated by other matrix components. PTX3 does not bind to IαI subcomponent bikunin and, accordingly, bikunin does not compete for the binding of PTX3 to IαI, indicating that PTX3 interacts with IαI subcomponent HC only. Recombinant PTX3-specific N-terminal region, but not the PTX3-pentraxin C-terminal domain, showed the same ability as full-length protein to bind to HCs and to enable HA organization and matrix formation by Ptx3-/- cumulus cell oocyte complexes cultured in vitro. Furthermore, a monoclonal antibody raised against PTX3 N terminus, which inhibits PTX3/IαI interaction, also prevents recombinant full-length PTX3 from restoring a normal phenotype to in vitro-cultured Ptx3-/- cumuli. These results indicate that PTX3 directly interacts with HCs of IαI and that such interaction is essential for organizing HA in the viscoelastic matrix of cumulus oophorus, highlighting a direct functional link between the two molecules.
Journal of Biological Chemistry | 2008
Antonio Inforzato; Vincenzo Rivieccio; Antonio P. Morreale; Antonio Bastone; Antonietta Salustri; Laura Scarchilli; Antonio Verdoliva; Silvia Vincenti; Grazia Gallo; Caterina Chiapparino; Lucrezia Pacello; Eleonora Nucera; Ottaviano Serlupi-Crescenzi; Anthony J. Day; Barbara Bottazzi; Alberto Mantovani; Rita De Santis; Giovanni Salvatori
PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys317 and Cys318 are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3-/- mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3-/- mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.
Journal of Leukocyte Biology | 2006
Barbara Bottazzi; Antonio Bastone; Andrea Doni; Cecilia Garlanda; Sonia Valentino; Livija Deban; Virginia Maina; Alessia Cotena; Federica Moalli; Luca Vago; Antonietta Salustri; Luigina Romani; Alberto Mantovani
The long pentraxin 3 (PTX3) is member of a complex superfamily of multifunctional proteins characterized by a cyclic multimeric structure. PTX3 is highly conserved in evolution and is produced by innate‐immunity cells in response to proinflammatory signals and Toll‐like receptor engagement. PTX3 plays complex, nonredundant functions in vivo, acting as a predecessor of antibodies, recognizing microbes, activating complement, facilitating pathogen recognition by phagocytes, and hence, playing a nonredundant role in resistance against selected pathogens. In addition, PTX3 is essential in female fertility by acting as a nodal point for the assembly of the cumulus oophorus hyaluronan‐rich extracellular matrix. Thus, the prototypic long pentraxin PTX3 is a multifunctional, soluble pattern recognition receptor acting as a nonredundant component of the humoral arm of innate immunity and involved in matrix deposition and female fertility.
Biology of Reproduction | 2004
Eva Nagyova; Antonella Camaioni; Radek Prochazka; Antonietta Salustri
Abstract Previous studies have shown that the heavy chains (HCs) of serum-derived inter-alpha-trypsin inhibitor (IαI) molecules become covalently linked to hyaluronan (HA) during in vivo mouse cumulus expansion and significantly contribute to cumulus matrix organization. Experiments with mice suggest that the incorporation of such proteins in cumulus matrix appears to be rather complex, involving LH/hCG-induced changes in blood-follicle barrier and functional cooperation between cumulus cells, granulosa cells, and oocyte within the follicle. We demonstrate here that HC-HA covalent complexes are formed during in vivo porcine cumulus expansion as well. Western blot analysis with IαI antibody revealed that follicular fluids from medium-sized follicles and those from large follicles unstimulated with hCG contain high levels of all forms of IαI family members present in pig serum. The same amount of HCs were covalently transferred from IαI molecules to HA when pig oocyte-cumulus complexes (OCCs) were stimulated in vitro with FSH in the presence of pig serum or follicular fluid from unstimulated or hCG-stimulated follicles. In addition, HC-HA coupling activity was stimulated in cumulus cells by FSH treatment also in the absence of oocyte. Collectively, these results indicate that IαI molecules can freely cross the blood follicle barrier and that follicular fluid collected at any stage of folliculogenesis can be successfully used instead of serum for improving OCC maturation. Finally, pig cumulus cells show an autonomous ability to promote the incorporation of IαI HCs in the cumulus matrix.
Glycoconjugate Journal | 2002
Lisheng Zhuo; Antonietta Salustri; Koji Kimata
Bikunin is a small chondroitin sulfate proteoglycan that occurs in blood as the light chain of inter-α-trypsin inhibitor (ITI) family members. The relatively short chondroitin sulfate chain of bikunin shows a characteristic pattern of sulfation in both the linkage region and the chondroitin sulfate backbone. To the internal N-acetylgalactosamines in the lower sulfated portion near the non-reducing end, up to two “side” proteins could bind covalently via a unique ester bond to form “core protein-glycosaminoglycan-side protein” complexes, the ITI family. ITI molecules are synthesized in hepatocytes, and then secreted into circulation at high concentrations. In the presence of yet unidentified factors, the side proteins are transferred from chondroitin sulfate to hyaluronan by a transesterification reaction to form what has been described as the Serum-derived Hyaluronan-Associated Protein (SHAP)-hyaluronan complex. The formation of this complex is required for the stabilization of the extracellular matrix of fibroblasts, mesothelial cells, and cumuli oophori. When the gene for bikunin is inactivated, female mice exhibit severe infertility as a consequence of a defect of the side protein precursor in forming a complex with the hyaluronan in cumulus oophorus before ovulation. Therefore, the chondroitin sulfate moiety of bikunin is essential for presenting SHAP to hyaluronan, which is indispensable for ovulation and fertilization in mammals. Published in 2003.