Antonella Casamassa
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonella Casamassa.
Cell Death & Differentiation | 2012
Francesca Boscia; C. D'Avanzo; Anna Pannaccione; Agnese Secondo; Antonella Casamassa; Luigi Formisano; Natascia Guida; L. Annunziato
Changes in intracellular [Ca2+]i levels have been shown to influence developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of the myelination and re-myelination processes. In the present study, we explored whether calcium signals mediated by the selective sodium calcium exchanger (NCX) family members NCX1, NCX2, and NCX3, play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte phenotype. In fact, whereas NCX1 was downregulated, NCX3 was strongly upregulated during oligodendrocyte development. The importance of calcium signaling mediated by NCX3 during oligodendrocyte maturation was supported by several findings. Indeed, whereas knocking down the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) and myelin basic protein (MBP), its overexpression induced an upregulation of CNPase and MBP. Furthermore, NCX3-knockout mice showed not only a reduced size of spinal cord but also marked hypo-myelination, as revealed by decrease in MBP expression and by an accompanying increase in OPC number. Collectively, our findings indicate that calcium signaling mediated by NCX3 has a crucial role in oligodendrocyte maturation and myelin formation.
Neurobiology of Disease | 2013
Luigi Formisano; Natascia Guida; Valeria Valsecchi; Giuseppe Pignataro; Antonio Vinciguerra; Anna Pannaccione; Agnese Secondo; Francesca Boscia; Pasquale Molinaro; Maria Josè Sisalli; Rossana Sirabella; Antonella Casamassa; Lorella M.T. Canzoniero; Gianfranco Di Renzo; Lucio Annunziato
The Na(+)-Ca(2+) exchanger 1 (NCX1), a bidirectional transporter that mediates the electrogenic exchange of one calcium ion for three sodium ions across the plasma membrane, is known to be involved in brain ischemia. Since the RE1-silencing transcription factor (REST) is a key modulator of neuronal gene expression in several neurological conditions, we studied the possible involvement of REST in regulating NCX1 gene expression and activity in stroke. We found that: (1) REST binds in a sequence specific manner and represses through H4 deacetylation, ncx1 gene in neuronal cells by recruting CoREST, but not mSin3A. (2) In neurons and in SH-SY5Y cells REST silencing by siRNA and site-direct mutagenesis of REST consensus sequence on NCX1 brain promoter determined an increase in NCX1 promoter activity. (3) By contrast, REST overexpression caused a reduction in NCX1 protein expression and activity. (4) Interestingly, in rats subjected to transient middle cerebral artery occlusion (tMCAO) and in organotypic hippocampal slices or SH-SY5Y cells exposed to oxygen and glucose deprivation (OGD) plus reoxygenation (RX), the increase in REST was associated with a decrease in NCX1. However, this reduction was reverted by REST silencing. (5) REST knocking down, along with the deriving NCX1 overexpression in the deep V and VIb cortical layers caused a marked reduction in infarct volume after tMCAO. Double silencing of REST and NCX1 completely abolished neuroprotection induced by siREST administration. Collectively, these results demonstrate that REST, by regulating NCX1 expression, may represent a potential druggable target for the treatment of brain ischemia.
Advances in Experimental Medicine and Biology | 2013
Francesca Boscia; Carla D’Avanzo; Anna Pannaccione; Agnese Secondo; Antonella Casamassa; Luigi Formisano; Natascia Guida; Antonella Scorziello; Gianfranco Di Renzo; Lucio Annunziato
The initiation of microglial responses to the ischemic injury involves modifications of calcium homeostasis. Changes in [Ca(2+)](i) levels have also been shown to influence the developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of myelination and remyelination processes.We investigated the regional and temporal changes of NCX1 protein in microglial cells of the peri-infarct and core regions after permanent middle cerebral artery occlusion (pMCAO). Interestingly, 3 and 7 days after pMCAO, NCX1 signal strongly increased in the round-shaped microglia invading the infarct core. Cultured microglial cells from the core displayed increased NCX1 expression as compared with contralateral cells and showed enhanced NCX activity in the reverse mode of operation. Similarly, NCX activity and NCX1 protein expression were significantly enhanced in BV2 microglia exposed to oxygen and glucose deprivation, whereas NCX2 and NCX3 were downregulated. Interestingly, in NCX1-silenced cells, [Ca(2+)](i) increase induced by hypoxia was completely prevented. The upregulation of NCX1 expression and activity observed in microglia after pMCAO suggests a relevant role of NCX1 in modulating microglia functions in the postischemic brain.Next, we explored whether calcium signals mediated by NCX1, NCX2, or NCX3 play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte. In fact, while NCX1 was downregulated, NCX3 was strongly upregulated during the oligodendrocyte development. Whereas the knocking down of the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers CNPase and MBP, its overexpression induced their upregulation. Furthermore, NCX3 knockout mice exhibited not only a reduced size of spinal cord but also a marked hypomyelination, as revealed by the decrease in MBP expression and by the accompanying increase in OPCs number. Our findings indicate that calcium signaling mediated by NCX3 plays a crucial role in oligodendrocyte maturation and myelin formation.
Glia | 2016
Francesca Boscia; Gulnaz Begum; Giuseppe Pignataro; Rossana Sirabella; Ornella Cuomo; Antonella Casamassa; Dandan Sun; Lucio Annunziato
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na+ signaling influences and regulates important glial activities, and plays a role in neuron‐glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na+ pumps and Na+‐dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na+ homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimers disease, epilepsy, Parkinsons disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na+‐dependent ion transporters, including Na+/K+ ATPase, Na+/Ca2+ exchangers, Na+/H+ exchangers, Na+‐K+‐Cl− cotransporters, and Na+‐ HCO3− cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na+‐dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na+ dynamics in different neurological disorders. GLIA 2016;64:1677–1697
Journal of Neurochemistry | 2013
Francesca Boscia; Carla Esposito; Antonella Casamassa; Vittorio de Franciscis; Lucio Annunziato; Laura Cerchia
Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line‐derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post‐natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post‐ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret‐expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4‐reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions.
Glia | 2016
Antonella Casamassa; Claudia La Rocca; Sophie Sokolow; André Herchuelz; Giuseppe Matarese; Lucio Annunziato; Francesca Boscia
The Na+/Ca2+ exchanger NCX3, recently identified as a myelin membrane component, is involved in the regulation of [Ca2+]i during oligodendrocyte maturation. Here NCX3 involvement was studied in myelin oligodendrocyte glycoprotein (MOG)‐induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Western blotting and quantitative colocalization studies performed in wild‐type ncx3+/+ mice at different stages of EAE disease showed that NCX3 protein was intensely upregulated during the chronic stage, where it was intensely coexpressed with the oligodendrocyte precursor cells (OPC) marker NG2 and the premyelinating marker CNPase. Moreover, MOG35‐55‐immunized mice lacking the ncx3 gene displayed not only a reduced diameter of axons and an intact myelin ring number but also a dramatic decrease in OPC and pre‐myelinating cells in the white matter of the spinal cord when compared with ncx3+/+. Accordingly, ncx3−/− and ncx3+/− mutants developed early onset of EAE and more severe clinical symptoms. Interestingly, cytofluorimetric analysis revealed that during the peak stage of the disease, the number of immune T‐cell subsets in ncx3−/− mice, was not statistically different from that measured in ncx3+/+. Our findings demonstrate that knocking‐out NCX3 impairs oligodendrocyte response and worsens clinical symptoms in EAE without altering the immune T‐cell population. GLIA 2016;64:1124–1137
Molecular Neurobiology | 2016
Francesca Boscia; Antonella Casamassa; Agnese Secondo; Alba Esposito; Anna Pannaccione; Rossana Sirabella; Giuseppe Pignataro; Ornella Cuomo; Antonio Vinciguerra; Valeria de Rosa; Lucio Annunziato
Recently, the Na+/Ca+2 exchanger NCX1 and the calcium binding protein calretinin have emerged as new molecular effectors of delayed preconditioning in the brain. In the present study, we investigated whether NCX1 and calretinin cooperate within the preconditioned striatum to confer neurons greater resistance to degeneration. Confocal microscopy analysis revealed that NCX1 expression was upregulated in calretinin-positive interneurons in the rat striatum after tolerance induction. Consistently, coimmunoprecipitation assays performed on human SHSY-5Y cells, a neuronal cell line which constitutively expresses calretinin, revealed a binding between NCX1 and calretinin. Finally, silencing of calretinin expression, both in vitro and in vivo, significantly prevented preconditioning-induced neuroprotection. Interestingly, our biochemical and functional studies showed that the selective silencing of calretinin in brain cells significantly prevented not only the preconditioning-induced upregulation of NCX1 expression and activity but also the activation of the prosurvival protein kinase Akt, which is involved in calretinin and NCX1 protective actions. Collectively, our results indicate that the Na+/Ca+2 exchanger NCX1 and the calcium binding protein calretinin cooperate within the striatum to confer tolerance against cerebral ischemia.
PLOS ONE | 2018
Luca Sanguigno; Antonella Casamassa; Niccola Funel; Massimiliano Minale; Rodolfo Riccio; Salvatore Riccio; Francesca Boscia; Paola Brancaccio; Luca Pollina; Serenella Anzilotti; Gianfranco Di Renzo; Ornella Cuomo
Triticum vulgare has been extensively used in traditional medicine thanks to its properties of accelerating tissue repair. The specific extract of Triticum vulgare manufactured by Farmaceutici Damor (TVE-DAMOR) is already present in some pharmaceutical formulations used in the treatment of decubitus ulcers, skin lesions and burns. It has been recently suggested that this Triticum vulgare extract may possess potential anti-inflammatory properties. In the light of these premises the aim of the present paper was to verify the anti-inflammatory role of TVE, using the LPS-stimulated microglia model of inflammation. In particular the effect of different concentrations of TVE on the release of several mediators of inflammation such as nitric oxide, IL-6, PGE2 and TNF alpha was evaluated. More important, the anti-inflammatory effect of TVE was confirmed also in primary rat microglia cultures. The results of the present study show that TVE exerts anti-inflammatory properties since it reduces the release of all the evaluated markers of inflammation, such as NO, IL6, TNF alpha and PGE2 in LPS-activated BV2 microglial cells. Intriguingly, TVE reduced microglia activation and NO release also in primary microglia. Indeed, to verify the pathway of modulation of the inflammatory markers reported above, we found that TVE restores the cytoplasmic expression of p65 protein, kwown as specific marker associated with activation of inflammatory response. The evidence for an inhibitory activity on inflammation of this specific extract of Triticum vulgare may open the way to the possibility of a therapeutical use of the Triticum vulgare extract as an anti-inflammatory compound in certain pathological states such as burns, decubitus ulcers, folliculitis and inflammation of peripheral nerve.
Nature Neuroscience | 2018
Marisa Karow; J. Gray Camp; Sven Falk; Tobias Gerber; Abhijeet Pataskar; Malgorzata Gac-Santel; Jorge Kageyama; Agnieska Brazovskaja; Angela Garding; Wenqiang Fan; Therese Riedemann; Antonella Casamassa; Andrej Smiyakin; Christian Schichor; Magdalena Götz; Vijay K. Tiwari; Barbara Treutlein; Benedikt Berninger
Ectopic expression of defined transcription factors can force direct cell-fate conversion from one lineage to another in the absence of cell division. Several transcription factor cocktails have enabled successful reprogramming of various somatic cell types into induced neurons (iNs) of distinct neurotransmitter phenotype. However, the nature of the intermediate states that drive the reprogramming trajectory toward distinct iN types is largely unknown. Here we show that successful direct reprogramming of adult human brain pericytes into functional iNs by Ascl1 and Sox2 encompasses transient activation of a neural stem cell-like gene expression program that precedes bifurcation into distinct neuronal lineages. During this transient state, key signaling components relevant for neural induction and neural stem cell maintenance are regulated by and functionally contribute to iN reprogramming and maturation. Thus, Ascl1- and Sox2-mediated reprogramming into a broad spectrum of iN types involves the unfolding of a developmental program via neural stem cell-like intermediates.Ascl1 and Sox2 convert human brain pericytes into the two major neuronal subclasses of GABA- and glutamatergic neurons. Unexpectedly, despite the lack of cell division, this conversion requires passage through a neural stem cell-like state.
Neurobiology of Aging | 2017
Francesca Boscia; Anna Pannaccione; Roselia Ciccone; Antonella Casamassa; Cristina Franco; Ilaria Piccialli; Valeria de Rosa; Antonio Vinciguerra; Gianfranco Di Renzo; Lucio Annunziato