Francesca Boscia
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Boscia.
The Journal of Comparative Neurology | 2003
Michele Papa; Adriana Canitano; Francesca Boscia; Pasqualina Castaldo; Stefania Sellitti; Hartmut Porzig; Maurizio Taglialatela; Lucio Annunziato
In the central nervous system (CNS), the Na+‐Ca2+ exchanger plays a fundamental role in controlling the changes in the intracellular concentrations of Na+ and Ca2+ ions. These cations are known to regulate neurotransmitter release, cell migration and differentiation, gene expression, and neurodegenerative processes. In the present study, nonradioactive in situ hybridization and light immunohistochemistry were carried out to map the regional and cellular distribution for both transcripts and proteins encoded by the three known Na+‐Ca2+ exchanger genes NCX1, NCX2, and NCX3. NCX1 transcripts were particularly expressed in layers III‐V of the motor cortex, in the thalamus, in CA3 and the dentate gyrus of the hippocampus, in several hypothalamic nuclei, and in the cerebellum. NCX2 transcripts were strongly expressed in all hippocampal subregions, in the striatum, and in the paraventricular thalamic nucleus. NCX3 mRNAs were mainly detected in the hippocampus, in the thalamus, in the amygdala, and in the cerebellum. Immunohistochemical analysis revealed that NCX1 protein was mainly expressed in the supragranular layers of the cerebral cortex, in the hippocampus, in the hypothalamus, in the substantia nigra and ventral tegmental area, and in the granular layer of the cerebellum. The NCX2 protein was predominantly expressed in the hippocampus, in the striatum, in the thalamus, and in the hypothalamus. The NCX3 protein was particularly found in the CA3 subregion, and in the oriens, radiatum, and lacunoso‐moleculare layers of the hippocampus, in the ventral striatum, and in the cerebellar molecular layer. Collectively, these results suggest that the different Na+‐Ca2+ exchanger isoforms appear to be selectively expressed in several CNS regions where they might underlie different functional roles. J. Comp. Neurol. 461:31–48, 2003.
The Journal of Neuroscience | 2008
Pasquale Molinaro; Ornella Cuomo; Giuseppe Pignataro; Francesca Boscia; Rossana Sirabella; Anna Pannaccione; Agnese Secondo; Antonella Scorziello; Annagrazia Adornetto; Rosaria Gala; Davide Viggiano; Sophie Sokolow; André Herchuelz; Stéphane Schurmans; Gianfranco Di Renzo; Lucio Annunziato
Na+/Ca2+ exchanger 3 (NCX3), one of the three isoforms of the NCX family, is highly expressed in the brain and is involved in the maintenance of intracellular Na+ and Ca2+ homeostasis. Interestingly, whereas the function of NCX3 under physiological conditions has been determined, its role under anoxia is still unknown. To assess NCX3 role in cerebral ischemia, we exposed ncx3−/− mice to transient middle cerebral artery occlusion followed by reperfusion. In addition, to evaluate the effect of ncx3 ablation on neuronal survival, organotypic hippocampal cultures and primary cortical neurons from ncx3−/− mice were subjected to oxygen glucose deprivation (OGD) plus reoxygenation. Here we report that ncx3 gene suppression leads to a worsening of brain damage after focal ischemia and to a massive neuronal death in all the hippocampal fields of organotypic cultures as well as in cortical neurons from ncx3−/− mice exposed to OGD plus reoxygenation. In addition, in ncx3−/− cortical neurons exposed to hypoxia, NCX currents, recorded in the reverse mode of operation, were significantly lower than those detected in ncx3+/+. From these results, NCX3 protein emerges as a new molecular target that may have a potential therapeutic value in modulating cerebral ischemia.
The Journal of Comparative Neurology | 2003
Michele Papa; Francesca Boscia; Adriana Canitano; Pasqualina Castaldo; Stefania Sellitti; Lucio Annunziato; Maurizio Taglialatela
Voltage‐dependent K+ channels play a pivotal role in controlling cellular excitability within the nervous system. The aim of the present study was to investigate the expression in the adult rat brain of the three ether‐a‐gogo‐related gene (ERG) family members ERG1, ERG2, and ERG3, encoding for K+ channel subunits. To this aim, the distribution of ERG transcripts was studied by means of reverse‐transcription polymerase chain reaction (RT‐PCR) and nonradioactive in situ hybridization histochemistry (NR‐ISH). Furthermore, ERG1 subunit distribution was studied by immunohistochemical analysis. RT‐PCR analysis revealed ERG1, ERG2, and ERG3 expression in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, and cerebellum. NR‐ISH experiments detected transcripts encoded by all three ERG genes in the cerebral cortex and in all CA subfields and in the granular cell layer of the dentate gyrus of the hippocampus; strong ERG1 signals were also detected in scattered large elements throughout the oriens, pyramidal, and radiatum layers, and in the hilus of the dentate gyrus. In the thalamus, positively labeled neurons were detected in the reticular nucleus with ERG1 and ERG3 and in the anterodorsal nucleus with ERG2 riboprobes. Transcripts for ERG1 and, to a lesser degree, also for ERG3, were detected in the basal ganglia and in several brainstem nuclei. All three ERG genes appeared to be expressed in cerebellar Purkinje cells. Finally, ERG1 expression was also revealed in non‐neuronal elements such as ependymal and subependymal cells along the ventricular walls and hippocampal astrocytes. These results suggest that the K+ channel isoforms of the ERG family appear to be expressed in different central nervous system regions where they might differentially control the firing of neurons engaged in several networks. J. Comp. Neurol. 466:119–135, 2003.
Journal of Cerebral Blood Flow and Metabolism | 2006
Francesca Boscia; Rosaria Gala; Giuseppe Pignataro; Andrea de Bartolomeis; Maria Cicale; Alberto Ambesi-Impiombato; Gianfranco Di Renzo; Lucio Annunziato
Dysregulation of sodium [Na+]i and calcium [Ca2+]i homeostasis plays a pivotal role in the pathophysiology of cerebral ischemia. Three gene products of the sodium–calcium exchanger family NCX1, NCX2, and NCX3 couple, in a bidirectional way, the movement of these ions across the cell membrane during cerebral ischemia. Each isoform displays a selective distribution in the rat brain. To determine whether NCX gene expression can be regulated after cerebral ischemia, we used NCX isoform-specific antisense radiolabeled probes to analyze, by radioactive in situ hybridization histochemistry, the pattern of NCX1, NCX2, and NCX3 transcripts in the ischemic core, periinfarct area, as well as in nonischemic brain regions, after 6 and 24 h of permanent middle cerebral artery occlusion (pMCAO) in rats. We found that in the focal region, comprising divisions of the prefrontal, somatosensory, and insular cortices, all three NCX transcripts were downregulated. In the periinfarct area, comprising part of the motor cortex and the lateral compartments of the caudate-putamen, NCX2 messenger ribonucleic acid (mRNA) was downregulated, whereas NCX3 mRNA was significantly upregulated. In remote nonischemic brain regions such as the prelimbic and infralimbic cortices, and tenia tecta, both NCX1 and NCX3 transcripts were upregulated, whereas in the medial caudate-putamen only NCX3 transcripts increased. In all these intact regions, NCX2 signal strongly decreased. These results indicate that NCX gene expression is regulated after pMCAO in a differential manner, depending on the exchanger isoform and region involved in the insult. These data may provide a better understanding of each NCX subtypes pathophysiologic role and may allow researchers to design appropriate pharmacological strategies to treat brain ischemia.
Annals of the New York Academy of Sciences | 2006
Adriana Canitano; Michele Papa; Francesca Boscia; Pasqualina Castaldo; Stefania Sellitti; Maurizio Taglialatela; Lucio Annunziato
Abstract: In the central nervous system, the Na+/Ca2+ exchanger plays a fundamental role in controlling changes in the intracellular concentrations of Na+ and Ca2+ ions that occur in physiologic conditions such as neurotransmitter release, cell migration and differentiation, gene expression, as well as neuro‐degenerative processes. Three genes, NCX1, NCX2, and NCX3, encoding for Na+/Ca2+ exchanger isoforms have been cloned. In this review, by using non‐radioactive in situ hybridization and light immunohistochemistry with NCX isoform‐specific riboprobes and antibodies, respectively, a systematic brain mapping for both transcripts and proteins encoded by all three NCX genes is described. Intense expression of NCX transcripts and proteins was detected in the cerebral cortex, hippocampus, thalamus, metathalamus, hypothalamus, brainstem, spinal cord, and cerebellum. In these areas, NCX transcripts and proteins were often found with an overlapping distribution pattern, although specific brain areas displaying a peculiar expression of each exchanger isoform were also found. Furthermore, immunoelectron and confocal microscopy revealed the expression of the NCX1 isoform of the exchanger at both pre‐ and postsynaptic sites as well as in association with membranes of the endoplasmic reticulum. Collectively, these data suggest that the different isoforms of the Na+/Ca2+ exchanger appear to be selectively expressed in several CNS regions where they might underlie different functional roles.
Stroke | 2009
Francesca Boscia; Rosaria Gala; Anna Pannaccione; Agnese Secondo; Antonella Scorziello; Gianfranco Di Renzo; Lucio Annunziato
Background and Purpose— The sodium–calcium exchanger NCX1 represents a key mediator for maintaining [Na+]i and [Ca2+]i in anoxic conditions. To date, no information is available on NCX1 protein expression and activity in microglial cells under ischemic conditions. Methods— By means of Western blotting, patch-clamp electrophysiology, single-cell Fura-2 acetoxymethyl-ester microfluorometry, immunohistochemistry, and confocal microscopy, we investigated the regional and temporal changes of NCX1 protein in microglial cells of the peri-infarct and core regions after permanent middle cerebral artery occlusion. The exchanger expression and activity were measured in primary microglia isolated ex vivo from the core region of adult rat brains 7 days after permanent middle cerebral artery occlusion and in cultured microglia under in vitro hypoxia. Results— One day after permanent middle cerebral artery occlusion, NCX1 protein expression was detected in some microglial cells adjacent to the soma of neurons in the infarct core. More interestingly, 3 and 7 days after permanent middle cerebral artery occlusion, NCX1 signal strongly increased in the round-shaped microglia invading the infarct core. Cultured microglial cells obtained from the core also displayed increased NCX1 expression as compared with contralateral cells and showed enhanced NCX activity in the reverse mode of operation. Similarly, NCX activity and NCX1 protein expression were significantly enhanced in BV2 microglia exposed to oxygen and glucose deprivation, whereas NCX2 and NCX3 were downregulated. Interestingly, in NCX1-silenced cells, [Ca2+]i increase induced by hypoxia was completely prevented.
Neuropharmacology | 2006
Francesca Boscia; Lucio Annunziato; Maurizio Taglialatela
Retigabine and flupirtine are two structurally related molecules provided of anticonvulsant and analgesic actions. The present study has investigated the neuroprotective potential, as well as the possible underlying molecular mechanisms, exerted by retigabine and flupirtine in rat organotypic hippocampal slice cultures (OHSCs) exposed to N-methyl-D-aspartate (NMDA), oxygen and glucose deprivation followed by reoxygenation (OGD), or serum withdrawal (SW). Region-specific vulnerability of hippocampal subfields occurred with each of these injury models. Specifically, CA1 was the most susceptible region to both NMDA and OGD-induced neurodegeneration, whereas selective cell death in the dentate gyrus (DG) occurred upon OHSCs exposure to SW. The NMDA antagonist MK-801 (10-30 microM), despite blocking NMDA- and OGD-induced cell death, failed to prevent SW-induced neurodegeneration. Interestingly, retigabine (0.01-10 microM) and flupirtine (0.01-10 microM) dose-dependently prevented DG neuronal death induced by SW, with IC50 s of 0.4 microM and 0.7 microM, respectively. By contrast, retigabine and flupirtine (each at 10 microM) were less effective in counteracting NMDA- or OGD-induced toxicity in the CA1 region. Both retigabine and flupirtine (0.1-10 microM) reduced SW-induced ROS production in the DG with IC50 s of approximately 1 microM. This suggested that antioxidant actions of these compounds participated in OHSC neuroprotection during SW. By contrast, activation of KCNQ K+ channels seemed not to be involved in retigabine-induced OHSCs neuroprotection during SW, since linopirdine (20 microM) and XE-991 (10 microM), two KCNQ blockers, failed to reverse retigabine-induced neuronal rescue.
Molecular Pharmacology | 2007
Anna Pannaccione; Francesca Boscia; Antonella Scorziello; Annagrazia Adornetto; Pasqualina Castaldo; Rossana Sirabella; Maurizio Taglialatela; G.F. Di Renzo; Lucio Annunziato
The aim of the present study was to investigate whether KV3.4 channel subunits are involved in neuronal death induced by neurotoxic β-amyloid peptides (Aβ). In particular, to test this hypothesis, three main questions were addressed: 1) whether the Aβ peptide can up-regulate both the transcription/translation and activity of KV3.4 channel subunit and its accessory subunit, MinK-related peptide 2 (MIRP2); 2) whether the increase in KV3.4 expression and activity can be mediated by the nuclear factor-κB (NF-κB) family of transcriptional factors; and 3) whether the specific inhibition of KV3.4 channel subunit reverts the Aβ peptide-induced neurodegeneration in hippocampal neurons and nerve growth factor (NGF)-differentiated PC-12 cells. We found that Aβ1–42 treatment induced an increase in KV3.4 and MIRP2 transcripts and proteins, detected by reverse transcription-polymerase chain reaction and Western blot analysis, respectively, in NGF-differentiated PC-12 cells and hippocampal neurons. Patch-clamp experiments performed in whole-cell configuration revealed that the Aβ peptide caused an increase in IA current amplitude carried by KV3.4 channel subunits, as revealed by their specific blockade with blood depressing substance-I (BDS-I) in both hippocampal neurons and NGF-differentiated PC-12 cells. The inhibition of NF-κB nuclear translocation with the cell membrane-permeable peptide SN-50 prevented the increase in KV3.4 protein and transcript expression. In addition, the SN-50 peptide was able to block Aβ1–42-induced increase in KV3.4 K+ currents and to prevent cell death caused by Aβ1–42 exposure. Finally, BDS-I produced a similar neuroprotective effect by inhibiting the increase in KV3.4 expression. As a whole, our data indicate that KV3.4 channels could be a novel target for Alzheimers disease pharmacological therapy.
Cell Death & Differentiation | 2012
Francesca Boscia; C. D'Avanzo; Anna Pannaccione; Agnese Secondo; Antonella Casamassa; Luigi Formisano; Natascia Guida; L. Annunziato
Changes in intracellular [Ca2+]i levels have been shown to influence developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of the myelination and re-myelination processes. In the present study, we explored whether calcium signals mediated by the selective sodium calcium exchanger (NCX) family members NCX1, NCX2, and NCX3, play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte phenotype. In fact, whereas NCX1 was downregulated, NCX3 was strongly upregulated during oligodendrocyte development. The importance of calcium signaling mediated by NCX3 during oligodendrocyte maturation was supported by several findings. Indeed, whereas knocking down the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) and myelin basic protein (MBP), its overexpression induced an upregulation of CNPase and MBP. Furthermore, NCX3-knockout mice showed not only a reduced size of spinal cord but also marked hypo-myelination, as revealed by decrease in MBP expression and by an accompanying increase in OPC number. Collectively, our findings indicate that calcium signaling mediated by NCX3 has a crucial role in oligodendrocyte maturation and myelin formation.
Stroke | 2011
Valeria Valsecchi; Giuseppe Pignataro; Annalisa Del Prete; Rossana Sirabella; Carmela Matrone; Francesca Boscia; Antonella Scorziello; Maria Josè Sisalli; Elga Esposito; Nicola Zambrano; Gianfranco Di Renzo; Lucio Annunziato
Background and Purpose— The sodium–calcium exchanger-1 (NCX1) represents a key mediator for maintaining [Na+]i and [Ca2+]i homeostasis. Although changes in NCX1 protein and transcript expression have been detected during stroke, its transcriptional regulation is still unknown. Thus far, however, there is evidence that hypoxia-inducible factor-1 (HIF-1) is a nuclear factor required for transcriptional activation of several genes implicated in stroke. The main objective of this study was to investigate whether NCX1 gene might be a novel target of HIF-1 in the brain. Methods and Results— Here we report that: (1) in neuronal cells, NCX1 increased expression after oxygen and glucose deprivation or cobalt-induced HIF-1 activation was prevented by silencing HIF-1; (2) the brain NCX1 promoter cloned upstream of the firefly-luciferase gene contained 2 regions of HIF-1 target genes called hypoxia-responsive elements that are sensitive to oxygen and glucose deprivation or cobalt chloride; (3) HIF-1 specifically bound hypoxia-responsive elements on brain NCX1, as demonstrated by band-shift and chromatin immunoprecipitation assays; (4) HIF-1&agr; silencing prevented NCX1 upregulation and neuroprotection induced by ischemic preconditioning; and (5) NCX1 silencing partially reverted the preconditioning-induced neuroprotection in rats. Conclusions— NCX1 gene is a novel HIF-1 target, and HIF-1 exerts its prosurvival role through NCX1 upregulation during brain preconditioning.