Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonella Chillemi is active.

Publication


Featured researches published by Antonella Chillemi.


Cytometry Part B-clinical Cytometry | 2013

CD38 and CD157: A long journey from activation markers to multifunctional molecules

Valeria Quarona; Gianluca Zaccarello; Antonella Chillemi; Enrico Brunetti; Vijay Kumar Singh; Enza Ferrero; Ada Funaro; Alberto L. Horenstein; Fabio Malavasi

CD38 (also known as T10) was identified in the late 1970s in the course of pioneering work carried out at the Dana‐Farber Cancer Center (Boston, MA) that focused on the identification of surface molecules involved in antigen recognition. CD38 was initially found on thymocytes and T lymphocytes, but today we know that the molecule is found throughout the immune system, although its expression levels vary. Because of this, CD38 was considered an “activation marker,” a term still popular in routine flow cytometry. This review summarizes the findings obtained from different approaches, which led to CD38 being re‐defined as a multifunctional molecule. CD38 and its homologue CD157 (BST‐1), contiguous gene duplicates on human chromosome 4 (4p15), are part of a gene family encoding products that modulate the social life of cells by means of bidirectional signals. Both CD38 and CD157 play dual roles as receptors and ectoenzymes, endowed with complex activities related to signaling and cell homeostasis. The structure‐function analysis presented here is intended to give clinical scientists and flow cytometrists a background knowledge of these molecules. The link between CD38/CD157 and human diseases will be explored here in the context of chronic lymphocytic leukemia, myeloma and ovarian carcinoma, although other disease associations are also known. Thus CD38 and CD157 have evolved from simple leukocyte activation markers to multifunctional molecules involved in health and disease. Future tasks will be to explore their potential as targets for in vivo therapeutic interventions and as regulators of the immune response.


Molecular Medicine | 2013

Anti-CD38 antibody therapy: windows of opportunity yielded by the functional characteristics of the target molecule.

Antonella Chillemi; Zaccarello G; Quarona; Manuela Ferracin; Ghimenti C; Massimo Massaia; Alberto L. Horenstein; Fabio Malavasi

In vivo use of monoclonal antibodies (mAbs) has become a mainstay of routine clinical practice in the treatment of various human diseases. A number of molecules can serve as targets, according to the condition being treated. Now entering human clinical trials, CD38 molecule is a particularly attractive target because of its peculiar pattern of expression and its twin role as receptor and ectoenzyme. This review provides a range of analytical perspectives on the current progress in and challenges to anti-CD38 mAb therapy. We present a synopsis of the evidence available on CD38, particularly in myeloma and chronic lymphocytic leukemia (CLL). Our aim is to make the data from basic science helpful and accessible to a diverse clinical audience and, at the same time, to improve its potential for in vivo use. The topics covered include tissue distribution and signal implementation by mAb ligation and the possibility of increasing cell density on target cells by exploiting information about the molecule’s regulation in combination with drugs approved for in vivo use. Also analyzed is the behavior of CD38 as an enzyme: CD38 is a component of a pathway leading to the production of adenosine in the tumor microenvironment, thus inducing local anergy. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes.


Journal of Immunology | 2015

CD56brightCD16− NK Cells Produce Adenosine through a CD38-Mediated Pathway and Act as Regulatory Cells Inhibiting Autologous CD4+ T Cell Proliferation

Fabio Morandi; Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Sabrina Chiesa; Andrea Imperatori; Silvia Zanellato; Lorenzo Mortara; Marco Gattorno; Vito Pistoia; Fabio Malavasi

Recent studies suggested that human CD56brightCD16− NK cells may play a role in the regulation of the immune response. Since the mechanism(s) involved have not yet been elucidated, in the present study we have investigated the role of nucleotide-metabolizing enzymes that regulate the extracellular balance of nucleotides/nucleosides and produce the immunosuppressive molecule adenosine (ADO). Peripheral blood CD56dimCD16+ and CD56brightCD16− NK cells expressed similar levels of CD38. CD39, CD73, and CD157 expression was higher in CD56brightCD16− than in CD56dimCD16+ NK cells. CD57 was mostly expressed by CD56dimCD16+ NK cells. CD203a/PC-1 expression was restricted to CD56brightCD16− NK cells. CD56brightCD16− NK cells produce ADO and inhibit autologous CD4+ T cell proliferation. Such inhibition was 1) reverted pretreating CD56brightCD16− NK cells with a CD38 inhibitor and 2) increased pretreating CD56brightCD16− NK cells with a nucleoside transporter inhibitor, which increase extracellular ADO concentration. CD56brightCD16− NK cells isolated from the synovial fluid of juvenile idiopathic arthritis patients failed to inhibit autologous CD4+ T cell proliferation. Such functional impairment could be related to 1) the observed reduced CD38/CD73 expression, 2) a peculiar ADO production kinetics, and 3) a different expression of ADO receptors. In contrast, CD56brightCD16− NK cells isolated from inflammatory pleural effusions display a potent regulatory activity. In conclusion, CD56brightCD16− NK cells act as “regulatory cells” through ADO produced by an ectoenzymes network, with a pivotal role of CD38. This function may be relevant for the modulation of the immune response in physiological and pathological conditions, and it could be impaired during autoimmune/inflammatory diseases.


Cells | 2015

NAD+-Metabolizing Ectoenzymes in Remodeling Tumor–Host Interactions: The Human Myeloma Model

Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Andrea Zito; Ilaria Roato; Fabio Morandi; Danilo Marimpietri; Marina Bolzoni; Denise Toscani; Robert J. Oldham; Massimiliano Cuccioloni; A. Kate Sasser; Vito Pistoia; Nicola Giuliani; Fabio Malavasi

Nicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD+ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD+, belongs to the ectoenzymatic network generating intracellular Ca2+-active metabolites. Within this general framework, the extracellular conversion of NAD+ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo.


Annals of the New York Academy of Sciences | 2015

Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche

Valeria Quarona; Valentina Ferri; Antonella Chillemi; Marina Bolzoni; Cristina Mancini; Gianluca Zaccarello; Ilaria Roato; Fabio Morandi; Danilo Marimpietri; Giuliano Faccani; Eugenia Martella; Vito Pistoia; Nicola Giuliani; Alberto L. Horenstein; Fabio Malavasi

The bone marrow provides a protected environment for generating a vast array of cell types. Bones are thus a dynamic source of structural components and soluble factors used either locally or at a distance from their site of production. We discuss the role of ectoenzymes in the bone niche where human myeloma grows. Selected ectoenzymes have been tested for their ability to promote production of substrates involved in signaling, synthesis of growth factors and hormones, and modulation of the immune response. Because of the difficulty of simultaneously tracking all these activities, we narrow our focus to events potentially influencing synthesis of adenosine (ADO), an important regulator of multiple biological functions, including local immunological tolerance. Our working hypothesis, to be discussed and partially tested herein, is that CD38, and likely BST1/CD157—both NAD+‐consuming enzymes, are active in the myeloma niche and lead a discontinuous chain of ectoenzymes whose final products are exploited by the neoplastic plasma cell as part of its local survival strategy. Coadjuvant ectoenzymes include PC‐1/CD203a, CD39, and CD73, which control the production of ADO. Results discussed here and from ongoing experiments indicate that the myeloma niche hosts the canonical, as well as alternative, pathways of ADO generation. Other possibilities are presented and discussed.


Journal of Molecular Endocrinology | 2010

The hidden life of NAD+-consuming ectoenzymes in the endocrine system

Fabio Malavasi; Silvia Deaglio; Gianluca Zaccarello; Alberto L. Horenstein; Antonella Chillemi; Valentina Audrito; Sara Serra; Marina Gandione; Andrea Zitella; Alessandro Tizzani

Ectoenzymes are a family of cell surface molecules whose catalytic domain lies in the extracellular region. A subset of this family, nucleotide-metabolizing ectoenzymes, are key components in the regulation of the extracellular balance between nucleotides (e.g. NAD(+) or ATP) and nucleosides (e.g. adenosine). Their substrates and products are signalling molecules that act by binding to specific receptors, triggering signals that regulate a variety of functions, ranging from the migration of immune cells, to synaptic transmission in the brain, to hormone/receptor interactions in the glands. Almost two decades of accumulated data indicate that these regulatory processes significantly affect the endocrine system, a tightly controlled information signal complex with clear evidence of fine regulation. Functional models discussed in this review include insulin secretion, bone modelling and the association between hormones and behaviour. The emerging pattern is one of a system operating as a scale-free network that hinges around hubs of key molecules, such as NAD(+) or ATP. The underlying natural link between nucleotides, ectoenzymes and the endocrine system is far from being clearly demonstrated. However, the body of evidence supporting the existence of such connection is growing exponentially. This review will try to read the available evidence in a hypothesis-oriented perspective, starting from the description of NAD(+) and of ecto- and endoenzymes involved in its metabolism.


Molecular Medicine | 2016

Adenosine Generated in the Bone Marrow Niche Through a CD38-Mediated Pathway Correlates with Progression of Human Myeloma.

Alberto L. Horenstein; Valeria Quarona; Denise Toscani; Federica Costa; Antonella Chillemi; Vito Pistoia; Nicola Giuliani; Fabio Malavasi

Human myeloma cells express CD38 at high levels and grow in hypoxic niches inside the bone marrow. Myeloma cells respond to hypoxia with metabolic changes leading to aerobic glycolysis, thus reducing adenosine triphosphate (ATP) and increasing NAD+. Our hypothesis is that these conditions favor the enzymatic pathways involved in the production of adenosine in the niche. Within the niche, NAD+ is able to activate a discontinuous adenosinergic pathway that relies upon CD38, CD203a and CD73 or TRACP, according to the environmental pH. The observed variability in adenosine concentrations in bone marrow aspirates is a result of the interactions taking place among myeloma and other cells in the bone marrow niche. A pilot study showed that adenosine profiles differ during disease progression. Adenosine levels were significantly higher in the bone marrow plasma of patients with symptomatic myeloma and correlated with ISS staging, suggesting that adenosine is produced in the myeloma niche at micromolar levels by an ectoenzymatic network centered on CD38. Adenosine levels increase with disease aggressiveness, a finding that supports adenosine as a potential marker of myeloma progression.


Oncotarget | 2015

A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation

Fabio Morandi; Barbara Morandi; Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Gianluca Zaccarello; Paolo Carrega; Guido Ferlazzo; Maria Cristina Mingari; Vito Pistoia; Fabio Malavasi

Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD+. Melanoma cells inhibited T cell proliferation through an ADO-dependent mechanism, since such inhibition was reverted using CD38/CD73 specific inhibitors. Melanoma cells abolished the function of effector memory, central memory and reduced naïve CD4+ T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4+ T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8+ T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role.


Frontiers in Bioscience | 2014

CD38 and bone marrow microenvironment.

Antonella Chillemi; Gianluca Zaccarello; Quarona; Lazzaretti M; Martella E; Nicola Giuliani; Ferracini R; Pistoia; Alberto L. Horenstein; Malavasi F

This review summarizes the events ruled by CD38 shaping the bone marrow environment, recapitulating old and new aspects derived from the body of knowledge on the molecule. The disease models considered were myeloma and chronic lymphocytic leukemia (CLL). CD38 has been analyzed considering its twin function as receptor and enzyme, roles usually not considered in clinics, where it is used as a routine marker. Another aspect pertaining basic science concerns the role of the molecule as a member of an ectoenzyme network, potentially metabolizing soluble factors not yet analyzed (e.g., NAD+, ATP, NAM) or influencing hormone secretion (e.g., oxytocin). The last point is focused on the use of CD38 as a target of an antibody-mediated therapeutic approach in myeloma and CLL. A recent observation is that CD38 may run an escape circuit leading to the production of adenosine. The generation of local anergy may be blocked by using anti-CD38 antibodies. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes.


Frontiers in Immunology | 2017

Roles and Modalities of Ectonucleotidases in Remodeling the Multiple Myeloma Niche

Antonella Chillemi; Valeria Quarona; Luca Antonioli; Davide Ferrari; Alberto L. Horenstein; Fabio Malavasi

Ectoenzymes are cell surface molecules, which represent functional bridges between the environment and the cytoplasm. One set of ectoenzymes—CD39, CD38, CD203a, and CD73—leads to the generation of adenosine (ADO) by metabolizing ATP and NAD+. While ADO is known to control inflammation and suppress immune responses, other aspects of ADO function are still obscure, mainly due to its short half-life in biological fluids. Human multiple myeloma (MM) grows in the closed system of the bone marrow (BM) niche representing an ideal setting for studying ectoenzymes and their products. Another source of information on ectoenzyme function may derive from in vivo results of anti-CD38 antibody therapy in MM. Current results, obtained from in vitro models and from preliminary in vivo findings, indicate that ectoenzymes produce ADO locally in the BM niche. Furthermore, MM cells release microvesicles (MV), which thanks to their molecular cargo and surface ectoenzymes may function as particulate communicators outside of the niche. During anti-CD38 antibody therapy, the MV carry therapeutic IgG, determining that the prevalent orientation of MV will be toward cells and tissues expressing receptors for the IgG Fc domain. The resulting picture is one where MM adopts an immune escape strategy based on reshaping the environmental niche. This adaptation is followed by actions of MV that are exerted in biological fluids and circulating immune cells. By coating FcRs+ cells, MV modify pericellular spaces, reproducing the metabolic halo generated by ectoenzymes within closed systems.

Collaboration


Dive into the Antonella Chillemi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Morandi

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar

Vito Pistoia

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge