Valeria Quarona
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valeria Quarona.
Cytometry Part B-clinical Cytometry | 2013
Valeria Quarona; Gianluca Zaccarello; Antonella Chillemi; Enrico Brunetti; Vijay Kumar Singh; Enza Ferrero; Ada Funaro; Alberto L. Horenstein; Fabio Malavasi
CD38 (also known as T10) was identified in the late 1970s in the course of pioneering work carried out at the Dana‐Farber Cancer Center (Boston, MA) that focused on the identification of surface molecules involved in antigen recognition. CD38 was initially found on thymocytes and T lymphocytes, but today we know that the molecule is found throughout the immune system, although its expression levels vary. Because of this, CD38 was considered an “activation marker,” a term still popular in routine flow cytometry. This review summarizes the findings obtained from different approaches, which led to CD38 being re‐defined as a multifunctional molecule. CD38 and its homologue CD157 (BST‐1), contiguous gene duplicates on human chromosome 4 (4p15), are part of a gene family encoding products that modulate the social life of cells by means of bidirectional signals. Both CD38 and CD157 play dual roles as receptors and ectoenzymes, endowed with complex activities related to signaling and cell homeostasis. The structure‐function analysis presented here is intended to give clinical scientists and flow cytometrists a background knowledge of these molecules. The link between CD38/CD157 and human diseases will be explored here in the context of chronic lymphocytic leukemia, myeloma and ovarian carcinoma, although other disease associations are also known. Thus CD38 and CD157 have evolved from simple leukocyte activation markers to multifunctional molecules involved in health and disease. Future tasks will be to explore their potential as targets for in vivo therapeutic interventions and as regulators of the immune response.
Journal of Immunology | 2015
Fabio Morandi; Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Sabrina Chiesa; Andrea Imperatori; Silvia Zanellato; Lorenzo Mortara; Marco Gattorno; Vito Pistoia; Fabio Malavasi
Recent studies suggested that human CD56brightCD16− NK cells may play a role in the regulation of the immune response. Since the mechanism(s) involved have not yet been elucidated, in the present study we have investigated the role of nucleotide-metabolizing enzymes that regulate the extracellular balance of nucleotides/nucleosides and produce the immunosuppressive molecule adenosine (ADO). Peripheral blood CD56dimCD16+ and CD56brightCD16− NK cells expressed similar levels of CD38. CD39, CD73, and CD157 expression was higher in CD56brightCD16− than in CD56dimCD16+ NK cells. CD57 was mostly expressed by CD56dimCD16+ NK cells. CD203a/PC-1 expression was restricted to CD56brightCD16− NK cells. CD56brightCD16− NK cells produce ADO and inhibit autologous CD4+ T cell proliferation. Such inhibition was 1) reverted pretreating CD56brightCD16− NK cells with a CD38 inhibitor and 2) increased pretreating CD56brightCD16− NK cells with a nucleoside transporter inhibitor, which increase extracellular ADO concentration. CD56brightCD16− NK cells isolated from the synovial fluid of juvenile idiopathic arthritis patients failed to inhibit autologous CD4+ T cell proliferation. Such functional impairment could be related to 1) the observed reduced CD38/CD73 expression, 2) a peculiar ADO production kinetics, and 3) a different expression of ADO receptors. In contrast, CD56brightCD16− NK cells isolated from inflammatory pleural effusions display a potent regulatory activity. In conclusion, CD56brightCD16− NK cells act as “regulatory cells” through ADO produced by an ectoenzymes network, with a pivotal role of CD38. This function may be relevant for the modulation of the immune response in physiological and pathological conditions, and it could be impaired during autoimmune/inflammatory diseases.
Cells | 2015
Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Andrea Zito; Ilaria Roato; Fabio Morandi; Danilo Marimpietri; Marina Bolzoni; Denise Toscani; Robert J. Oldham; Massimiliano Cuccioloni; A. Kate Sasser; Vito Pistoia; Nicola Giuliani; Fabio Malavasi
Nicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD+ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD+, belongs to the ectoenzymatic network generating intracellular Ca2+-active metabolites. Within this general framework, the extracellular conversion of NAD+ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo.
Annals of the New York Academy of Sciences | 2015
Valeria Quarona; Valentina Ferri; Antonella Chillemi; Marina Bolzoni; Cristina Mancini; Gianluca Zaccarello; Ilaria Roato; Fabio Morandi; Danilo Marimpietri; Giuliano Faccani; Eugenia Martella; Vito Pistoia; Nicola Giuliani; Alberto L. Horenstein; Fabio Malavasi
The bone marrow provides a protected environment for generating a vast array of cell types. Bones are thus a dynamic source of structural components and soluble factors used either locally or at a distance from their site of production. We discuss the role of ectoenzymes in the bone niche where human myeloma grows. Selected ectoenzymes have been tested for their ability to promote production of substrates involved in signaling, synthesis of growth factors and hormones, and modulation of the immune response. Because of the difficulty of simultaneously tracking all these activities, we narrow our focus to events potentially influencing synthesis of adenosine (ADO), an important regulator of multiple biological functions, including local immunological tolerance. Our working hypothesis, to be discussed and partially tested herein, is that CD38, and likely BST1/CD157—both NAD+‐consuming enzymes, are active in the myeloma niche and lead a discontinuous chain of ectoenzymes whose final products are exploited by the neoplastic plasma cell as part of its local survival strategy. Coadjuvant ectoenzymes include PC‐1/CD203a, CD39, and CD73, which control the production of ADO. Results discussed here and from ongoing experiments indicate that the myeloma niche hosts the canonical, as well as alternative, pathways of ADO generation. Other possibilities are presented and discussed.
Molecular Medicine | 2016
Alberto L. Horenstein; Valeria Quarona; Denise Toscani; Federica Costa; Antonella Chillemi; Vito Pistoia; Nicola Giuliani; Fabio Malavasi
Human myeloma cells express CD38 at high levels and grow in hypoxic niches inside the bone marrow. Myeloma cells respond to hypoxia with metabolic changes leading to aerobic glycolysis, thus reducing adenosine triphosphate (ATP) and increasing NAD+. Our hypothesis is that these conditions favor the enzymatic pathways involved in the production of adenosine in the niche. Within the niche, NAD+ is able to activate a discontinuous adenosinergic pathway that relies upon CD38, CD203a and CD73 or TRACP, according to the environmental pH. The observed variability in adenosine concentrations in bone marrow aspirates is a result of the interactions taking place among myeloma and other cells in the bone marrow niche. A pilot study showed that adenosine profiles differ during disease progression. Adenosine levels were significantly higher in the bone marrow plasma of patients with symptomatic myeloma and correlated with ISS staging, suggesting that adenosine is produced in the myeloma niche at micromolar levels by an ectoenzymatic network centered on CD38. Adenosine levels increase with disease aggressiveness, a finding that supports adenosine as a potential marker of myeloma progression.
Oncotarget | 2015
Fabio Morandi; Barbara Morandi; Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Gianluca Zaccarello; Paolo Carrega; Guido Ferlazzo; Maria Cristina Mingari; Vito Pistoia; Fabio Malavasi
Nucleotide-metabolizing ectoenzymes are endowed with an extracellular catalytic domain, which is involved in regulating the extracellular nucleotide/nucleoside balance. The tumor microenvironment contains high levels of adenosine (ADO) generated by this enzymatic network, thus promoting tumor growth by inhibiting anti-tumor immune responses. ADO inhibition in melanoma murine models limits tumor metastases and restores anti-tumor immune responses. This work investigates the expression and function of ectoenzymes in primary human melanoma cell lines. All of latter cells expressed CD38, CD39, CD73, and CD203a/PC-1, and produced ADO from AMP and NAD+. Melanoma cells inhibited T cell proliferation through an ADO-dependent mechanism, since such inhibition was reverted using CD38/CD73 specific inhibitors. Melanoma cells abolished the function of effector memory, central memory and reduced naïve CD4+ T cell proliferation. Accordingly, phosphorylation of S6 ribosomal protein, p38 and Stat1 was lower in activated memory cells than in naïve CD4+ T lymphocytes. Melanoma cells also inhibited proliferation of naïve, memory and -to a lesser extent- of effector CD8+ T cells. These different inhibitory effects correlated with distinct patterns of expression of the ADO receptor A2a and A2b. These results show that primary human melanoma cell lines suppress in vitro T cell proliferation through an adenosinergic pathway in which CD38 and CD73 play a prominent role.
Frontiers in Immunology | 2017
Antonella Chillemi; Valeria Quarona; Luca Antonioli; Davide Ferrari; Alberto L. Horenstein; Fabio Malavasi
Ectoenzymes are cell surface molecules, which represent functional bridges between the environment and the cytoplasm. One set of ectoenzymes—CD39, CD38, CD203a, and CD73—leads to the generation of adenosine (ADO) by metabolizing ATP and NAD+. While ADO is known to control inflammation and suppress immune responses, other aspects of ADO function are still obscure, mainly due to its short half-life in biological fluids. Human multiple myeloma (MM) grows in the closed system of the bone marrow (BM) niche representing an ideal setting for studying ectoenzymes and their products. Another source of information on ectoenzyme function may derive from in vivo results of anti-CD38 antibody therapy in MM. Current results, obtained from in vitro models and from preliminary in vivo findings, indicate that ectoenzymes produce ADO locally in the BM niche. Furthermore, MM cells release microvesicles (MV), which thanks to their molecular cargo and surface ectoenzymes may function as particulate communicators outside of the niche. During anti-CD38 antibody therapy, the MV carry therapeutic IgG, determining that the prevalent orientation of MV will be toward cells and tissues expressing receptors for the IgG Fc domain. The resulting picture is one where MM adopts an immune escape strategy based on reshaping the environmental niche. This adaptation is followed by actions of MV that are exerted in biological fluids and circulating immune cells. By coating FcRs+ cells, MV modify pericellular spaces, reproducing the metabolic halo generated by ectoenzymes within closed systems.
Oncotarget | 2017
Federica Costa; Denise Toscani; Antonella Chillemi; Valeria Quarona; Marina Bolzoni; Valentina Marchica; Rosanna Vescovini; Cristina Mancini; Eugenia Martella; Nicoletta Campanini; Chiara Schifano; Sabrina Bonomini; Fabrizio Accardi; Alberto L. Horenstein; Franco Aversa; Fabio Malavasi; Nicola Giuliani
It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14+ cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation. These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis.It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14+ cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation.These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis.
Human antibodies | 2017
Alberto L. Horenstein; Antonella Chillemi; Valeria Quarona; Andrea Zito; Valentina Mariani; Angelo C. Faini; Fabio Morandi; Ilaria Schiavoni; Clara M. Ausiello; Fabio Malavasi
This review focuses on the concept of antibodies acting as receptor agonists and antagonists, and on the potential relevance of this notion in applied medicine. Antibodies are composed of three functional units: two antigen-binding fragments (Fabs) that confer antigen specificity and one constant fragment (Fc) linking antibodies to immune effector functions. The proof-of-concept that large amounts of highly specific and homogeneous antibodies could be produced was provided in 1975 by César Milstein and Georges Köhler. These monoclonal antibody (mAb) reagents started a revolution in medical research, diagnostics, and clinical applications. Alongside diagnostic applications, mAbs were successfully used in vivo: (i) to bind (neutralize/antagonize) antigens expressed on the surface of tumor cells; (ii) to activate immune effector mechanisms; (iii) to crosslink plasma membrane receptors and hence activate therapeutic signaling pathways; and lastly, (iv) the technique was expanded to produce bispecific mAbs, which can bind two different antigens while retaining the ability to activate immune effector functions. The abilities of mAbs to bind, transduce signals, and exert immunostimulatory agonistic capacities are the central issues of this review. The starting point is that some mAbs operate as molecular agonists, substituting for the natural ligand of the receptor. Our analysis is restricted to mAbs that act as receptor agonist/antagonists by either mimicking ligand binding, or through allosteric modulation mediated by binding sites that are topographically distinct from the orthosteric binding site. Functional considerations based on the agonistic stimulation of human CD38 by specific mAbs as surrogate ligands are described as examples of the features of such molecules.
Frontiers in Pharmacology | 2018
Alberto L. Horenstein; Antonella Chillemi; Roberta Zini; Valeria Quarona; Nicoletta Bianchi; Rossella Manfredini; Roberto Gambari; Fabio Malavasi; Davide Ferrari
Cytokine-induced killer (CIK) cells, a heterogeneous T cell population obtained by in vitro differentiation of peripheral blood mononuclear cells (PBMC), represent a promising immunological approach in cancer. Numerous studies have explored the role of CD38, CD39, CD203a/PC-1, and CD73 in generating extracellular adenosine (ADO) and thus in shaping the tumor niche in favor of proliferation. The findings shown here reveal that CIK cells are able to produce extracellular ADO via traditional (CD39/CD73) and/or alternative (CD38/CD203a/CD73 or CD203a/CD73) pathways. Transcriptome analysis showed the mRNA expression of these molecules and their modulation during PBMC to CIK differentiation. When PBMC from normal subjects or cancer bearing patients were differentiated into CIK cells under normoxic conditions, CD38 and CD39 were greatly up-regulated while the number of CD203a, and CD73 positive cells underwent minor changes. Since hypoxic conditions are often found in tumors, we asked whether CD39, CD38, CD203a, and CD73 expressed by CIK cells were modulated by hypoxia. PBMC isolated from cancer patients and differentiated into CIK cells in hypoxic conditions did not show relevant changes in CD38, CD39, CD73, CD203a, and CD26. CIK cells also expressed A1, A2A, and A2B ADO receptors and they only underwent minor changes as a consequence of hypoxia. The present study sheds light on a previously unknown functional aspect of CIK cells, opening the possibility of pharmacologically modulated ADO-generating ectoezymes to improve CIK cells performance.