Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonello Mallamaci is active.

Publication


Featured researches published by Antonello Mallamaci.


Nature Neuroscience | 2000

Area identity shifts in the early cerebral cortex of Emx2 −/− mutant mice

Antonello Mallamaci; Luca Muzio; Chun Hung Chan; John G. Parnavelas; Edoardo Boncinelli

The specification of area identities in the cerebral cortex is a complex process, primed by intrinsic cortical cues and refined after the arrival of afferent fibers from the thalamus. Little is known about the genetic control of the early steps of this process, but the distinctive expression pattern of the homeogene Emx2 in the developing cortex has prompted suggestions that it is critical in this context. We tested this hypothesis using Emx2−/− mice. We found that the normal spectrum of cortical areal identities was encoded in these mutants, but areas with caudal–medial identities were reduced and those with anterior–lateral identities were relatively expanded in the cortex.


The Journal of Neuroscience | 1997

Implication of OTX2 in pigment epithelium determination and neural retina differentiation

Paola Bovolenta; Antonello Mallamaci; Paola Briata; Giorgio Corte; Edoardo Boncinelli

The expression pattern of Otx2, a homeobox-containing gene, was analyzed from the beginning of eye morphogenesis until neural retina differentiation in chick embryos. Early on, Otx2 expression was diffuse throughout the optic vesicles but became restricted to their dorsal part when the vesicles contacted the surface ectoderm. As the optic cup forms,Otx2 was expressed only in the outer layer, which gives rise to the pigment epithelium. This early Otx2expression pattern was complementary to that of PAX2, which localizes to the ventral half of the developing eye and optic stalk.Otx2 expression was always observed in the pigment epithelium at all stages analyzed but was extended to scattered cells located in the central portion of the neural retina around stage 22. The number of cells expressing Otx2 transcripts increased with time, following a central to peripheral gradient. Bromodeoxyuridine labeling in combination with immunohistochemistry with anti-OTX2 antiserum and different cell-specific markers were used to determine that OTX2-positive cells are postmitotic neuroblasts undergoing differentiation into several, if not all, of the distinct cell types present in the chick retina. These data indicate thatOtx2 might have a double role in eye development. First, it might be necessary for the early specification and subsequent functioning of the pigment epithelium. Later, OTX2 expression might be involved in retina neurogenesis, defining a differentiation feature common to the distinct retinal cell classes.


Nature Neuroscience | 2002

Conversion of cerebral cortex into basal ganglia in Emx2-/- Pax6Sey/Sey double-mutant mice

Luca Muzio; Barbara DiBenedetto; Anastassia Stoykova; Edoardo Boncinelli; Peter Gruss; Antonello Mallamaci

The molecular mechanisms that activate morphogenesis of cerebral cortex are currently the subject of intensive experimental analysis. Transcription factor genes of the homeobox, basic helix-loop-helix (bHLH) and zinc-finger families have recently been shown to have essential roles in this process. However, the actual selector genes activating corticogenesis have not yet been identified. Here we show that high-level expression of at least one functional allele of either of the homeobox genes Emx2 or Pax6 in the dorsal telencephalon is necessary and sufficient to stably activate morphogenesis of cerebral cortex and to repress that of adjacent structures, such as striatum.


Mechanisms of Development | 1998

Expression pattern of cSix3, a member of the Six/sine oculis family of transcription factors.

Paola Bovolenta; Antonello Mallamaci; Luis Puelles; Edoardo Boncinelli

We describe the expression pattern of cSix3, a chick homologue of the murine Six3. cSix3 transcripts are expressed from presomitic stages in the most anterior portion of the neural plate. As the neural tube folds and the optic vesicles evaginate, cSix3 is expressed in the optic vesicle and the rostroventral forebrain. At later stages, cSix3 is found in most of the structures derived from the anterior neural plate, i.e. olfactory epithelium, septum, adenohypophysis, hypothalamus and preoptic areas. During eye development, cSix3 expression is first found in the entire optic vesicle and the overlying ectoderm but soon becomes restricted to the prospective neural retina and to the lens placode. In the developing neural retina, cSix3 is expressed in the entire undifferentiated neuroepithelium but is rapidly downregulated, first in the postmitotic photoreceptors and later in the majority of retinal ganglion cells.


Mechanisms of Development | 1998

EMX2 protein in the developing mouse brain and olfactory area.

Antonello Mallamaci; Raffaella Iannone; Paola Briata; Luisa Pintonello; Sara Mercurio; Edoardo Boncinelli; Giorgio Corte

The distribution of EMX2, the protein product of the homeobox gene Emx2, was analyzed in the developing mouse CNS by means of a polyclonal antibody we raised against it. The protein is present in the rostral brain, the olfactory area and a set of scattered cells lying between the nasal pits and the telencephalon. In the cortical neuroepithelium EMX2 is expressed all along the rostro-caudal axis in a graded distribution with a caudal-medial maximum and a rostral-lateral minimum. Anti-EMX2 immunoreactivity is also detectable in Cajal-Retzius cells as well as in apical dendrites of marginal neurons of the cortical plate. We also observe that the EMX2 and EMX1 homeoproteins display complementary expression patterns in olfactory bulbs and amygdaloid complex. Here, they demarcate different neuronal populations, involved in processing olfactory information coming from the vomero-nasal organ and from the main olfactory epithelium, respectively. EMX2 is also detectable in mesencephalic structures, such as the optic tectum and tegmentum. The graded distribution of EMX2 along antero-posterior and medial-lateral axes of the primitive cortex prefigures a role of this protein in the subdivision of the cortex in cytoarchitectonic regions and possibly functional areas, whereas its presence in Cajal-Retzius cells suggests a role in the process of cortical lamination.


The Journal of Neuroscience | 2005

Foxg1 Confines Cajal-Retzius Neuronogenesis and Hippocampal Morphogenesis to the Dorsomedial Pallium

Luca Muzio; Antonello Mallamaci

It has been suggested that cerebral cortex arealization relies on positional values imparted to early cortical neuroblasts by transcription factor genes expressed within the pallial field in graded ways. Foxg1, encoding for one of these factors, previously was reported to be necessary for basal ganglia morphogenesis, proper tuning of cortical neuronal differentiation rates, and the switching of cortical neuroblasts from early generation of primordial plexiform layer to late production of cortical plate. Being expressed along a rostral/lateralhigh- to-caudal/mediallow gradient, Foxg1, moreover, could contribute to shaping the cortical areal profile as a repressor of caudomedial fates. We tested this prediction by a variety of approaches and found that it was correct. We found that overproduction of Cajal-Retzius neurons characterizing Foxg1-/- mutants does not arise specifically from blockage of laminar histogenetic progression of neocortical neuroblasts, as reported previously, but rather reflects lateral-to-medial repatterning of their cortical primordium. Even if lacking a neocortical plate, Foxg1-/- embryos give rise to structures, which, for molecular properties and birthdating profile, are highly reminiscent of hippocampal plate and dentate blade. Remarkably, in the absence of Foxg1, additional inactivation of the medial fates promoter Emx2, although not suppressing cortical specification, conversely rescues overproduction of Reelinon neurons.


European Journal of Neuroscience | 2006

Gene networks controlling early cerebral cortex arealization

Antonello Mallamaci; Anastassia Stoykova

Early thalamus‐independent steps in the process of cortical arealization take place on the basis of information intrinsic to the cortical primordium, as proposed by Rakic in his classical protomap hypothesis [ Rakic, P. (1988)Science, 241, 170–176]. These steps depend on a dense network of molecular interactions, involving genes encoding for diffusible ligands which are released around the borders of the cortical field, and transcription factor genes which are expressed in graded ways throughout this field. In recent years, several labs worldwide have put considerable effort into identifying members of this network and disentangling its topology. In this respect, a considerable amount of knowledge has accumulated and a first, provisional description of the network can be delineated. The aim of this review is to provide an organic synthesis of our current knowledge of molecular genetics of early cortical arealization, i.e. to summarise the mechanisms by which secreted ligands and graded transcription factor genes elaborate positional information and trigger the activation of distinctive area‐specific morphogenetic programs.


Mechanisms of Development | 1996

OTX2 homeoprotein in the developing central nervous system and migratory cells of the olfactory area

Antonello Mallamaci; Erica Di Blas; Paola Briata; Edoardo Boncinelli; Giorgio Corte

We analyzed the distribution of OTX2 during mouse development. OTX2 is a homeoprotein encoded by Otx2, a vertebrate homeobox gene expressed in the developing brain and anterior head regions. The protein is already detectable in pre-streak embryos, in nuclei of embryonic ectoderm or epiblast and primitive endoderm or hypoblast. Its distribution is uniform along the entire epiblast, while showing an antero-posterior gradient along the hypoblast at the time when primitive streak first forms. Between embryonic day 7 (E7) and E7.5 there is a progressive confinement of the protein to the anterior ectoderm corresponding to the forming headfold. At E7.5-E7.8, the protein is mainly confined in this region but is still present, though at lower level, in more posterior ectoderm. Starting from day 8 of development it is essentially confined to anterior neuroectoderm corresponding to presumptive fore- and midbrain. Its subsequent distribution in forebrain, midbrain, developing isthmo-cerebellum and posterior central nervous system is analyzed in detail. Of particular interest is the presence of OTX2 in nuclei of cells of the olfactory system starting from its origin in the olfactory placode. OTX2 protein is present in some cells of the olfactory epithelium, in both the major olfactory epithelium and the vomero-nasal organ, and in scattered migratory cells present in the mesenchyme outside it. These cells surround the axon bundles of the olfactory nerve along its path from the olfactory epithelium in the nasal cavities to the olfactory bulb in rostral telencephalon and include both ensheathing glial cells and luteinizing hormone-releasing hormone (LHRH)-positive cells.


Mechanisms of Development | 1996

EMX1 homeoprotein is expressed in cell nuclei of the developing cerebral cortex and in the axons of the olfactory sensory neurons.

Paola Briata; Erica Di Blas; Massimo Gulisano; Antonello Mallamaci; Raffaella Iannone; Edoardo Boncinelli; Giorgio Corte

We analyzed the distribution of EMX1 during mouse development. EMX1 is a homeoprotein encoded by Emx1, a regulatory homeobox gene expressed in the developing forebrain. Its distribution essentially overlaps the expression domains of Emx1 transcripts. The EMX1 protein is present in the developing dorsa telencephalon, that is in the cerebral cortex, olfactory bulb and hippocampus. In the cerebral cortex EMX1 is present in nuclei of proliferating, differentiating and most mature neurons belonging to all cortical layers. In the olfactory bulb it is present in all proliferating cells during development, whereas postnatally it is faintly expressed in some mitral cells. Non-cerebral localizations include a transient expression in branchial pouches, in the apical ectodermal ridge of the developing limbs and in the developing kidney. Of particular interest is the presence of EMX1 in the olfactory nerve from its first appearance during embryogenesis to birth. The protein is present in axons of olfactory sensory neurons along their entire length, including their terminals in spherical regions of neuropil in the olfactory bulb called glomeruli.


The Journal of Comparative Neurology | 2002

Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus.

Guillermina López-Bendito; Chun-Hung Chan; Antonello Mallamaci; John G. Parnavelas; Zoltán Molnár

Emx2 knockout mice appear to show a shift in the areal identity in the cerebral cortex of Emx2 knockout mice, which is matched with altered distribution of thalamocortical projections (Bishop et al. [2000] Science 288:344–3349; Mallamaci et al. [2000] Nat Neurosci. 3:679–686). We have examined the early establishment of these projections to understand how the altered Emx2 expression results in changes in their cortical targeting. We used carbocyanine dye tracing to visualize thalamocortical and corticofugal projections as well as immunohistochemistry for L1 and TAG‐1, respective markers of the two axonal systems, in wild‐type, heterozygote, and null mutant for Emx2 at embryonic (E) ages ranging from E13.5 to E18.5. These tracing studies demonstrated that, in Emx2 knockout mice, a large proportion of early thalamocortical projections were misrouted at the border between the diencephalon and telencephalon. This abnormality was associated with displaced connectivity of the internal capsule cells at the diencephalic–telencephalic junction. Interestingly, most of the aberrant thalamic projections compensated for the ventral entry to the telencephalon and still ascended to the cortex. Although this early targeting abnormality is associated with the altered Emx2 expression pattern in the cortex, it most probably occurs independently from it, and is related to earlier guidance defects at the diencephalic–telencephalic boundary. These defects might result in the altered and delayed arrival of thalamic projections to the cortex and, thus, contribute to the shifted thalamocortical matching previously observed in the Emx2 knockout mice. J. Comp. Neurol. 451:153–169, 2002.

Collaboration


Dive into the Antonello Mallamaci's collaboration.

Top Co-Authors

Avatar

Edoardo Boncinelli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Luca Muzio

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara DiBenedetto

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Carol Filippis

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Falcone

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Cristina Fimiani

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Paola Bovolenta

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge